HHS-Developed Risk Adjustment Model Algorithm “Do It Yourself (DIY)” Software Instructions

Section 1343 of the Affordable Care Act provides for a permanent risk adjustment program. To protect against potential effects of adverse selection, the risk adjustment program transfers funds from plans with relatively low risk enrollees to plans with relatively high risk enrollees. It generally applies to non-grandfathered individual and small group plans inside and outside Marketplaces.

The HHS risk adjustment methodology is described in the HHS Notice of Benefit and Payment Parameters for 2014 final rule (78 FR 15410), which was published in the Federal Register on March 11, 2013. Modifications to the HHS risk adjustment methodology for the 2016 benefit year are described in the HHS Notice of Benefit and Payment Parameters for 2016 final rule (80 FR 10749), which was published in the Federal Register on February 27, 2015.

The methodology that HHS will use when operating a risk adjustment program on behalf of a State for the 2016 benefit year will calculate a plan average risk score for each covered plan based upon the relative risk of the plan’s enrollees, and apply a payment transfer formula in order to determine risk adjustment payments and charges between plans within a risk pool within a market within a State. The risk adjustment methodology addresses three considerations: (1) the newly insured population; (2) plan metal level differences and permissible rating variation; and (3) the need for risk adjustment transfers that net to zero. The risk adjustment methodology developed by HHS for the 2016 benefit year:

- Is developed on commercial claims data for a population similar to the expected population to be risk adjusted;
- Employs the hierarchical condition category (“HCC”) grouping logic used in the Medicare risk adjustment program, but with HCCs refined and selected to reflect the expected risk adjustment population;
- Establishes concurrent risk adjustment models, one for each combination of metal level (platinum, gold, silver, bronze, catastrophic) and age group (adult, child, infant);
- Results in payment transfers that net to zero within a risk pool within a market within a State;
- Adjusts payment transfers for plan metal level, geographic rating area, induced demand, premium assistance Medicaid alternative plans, and age rating, so that transfers reflect health risk and not other cost differences; and
- Transfers funds between plans within a risk pool within a market within a State.

This document provides instructions for the HHS risk adjustment models for the 2016 benefit year, with revisions from the software instructions posted on the CCIIO website on July 29, 2016.

Key Revisions in 2016:
- Revised instructions related to ICD-10 diagnosis codes to account for the fiscal year (FY) 2017 update effective October 1, 2016. Removed all references to ICD-9 diagnosis codes because their use ended September 30, 2015.
Added these bill types to the outpatient facility source of diagnosis (Section II):
 - bill type 851 (critical access hospital admit through discharge); and
 - bill type 857 (critical access hospital replacement of prior claim).

Added note on checking validity of ICD-10 diagnosis codes by fiscal year when preparing diagnosis-level file (Section II).

Revised note on bundled claims for mother and newborn infant to include only ICD-10 (Section II and Table 1). Updated the bundled claim algorithm to require age = 0 for infants because several newborn birth codes had the MCE age = 0 edit removed in the FY2017 update.

Updated Table 2 to add 2016 CPT/HCPCS codes used for diagnosis filtering, as described in Section II. The updated Table 2 includes review of 2016 quarterly updates with effective dates through October 1, 2016. Replaced the 2014 column of code information with 2015 codes (used for historical data purposes).

Removed Table 3a (ICD-9 to HHS-Condition Categories [CC] Crosswalk) and references to it in Sections II and V. Changed the name of Table 3b (ICD-10 to HHS-Condition Categories [CC] Crosswalk) to Table 3. Revised Table 3 to contain FY2016 and FY2017 ICD-10 diagnosis codes and FY2016 and FY2017 MCE age and sex conditions. Updated ICD-10 code labels to reflect changes in FY2017. Updated CC age splits and CC assignments to account for new FY2017 ICD-10 codes and age edits. Table 3 also contains a new combined set of MCE age and sex conditions to be used for Calendar Year (CY) 2016 that covers both fiscal years (FY2016 and FY2017).

Revised the assignment of age 0 infants without newborn (birth) HCCs to “Age 1” and the corresponding severity level of any other diagnoses rather than assigning these infants to “Age 0, Term,” as was done in 2014 and 2015 benefit year operations (Section II, Section V, Table 1, and Table 8). For male age 0 infants who lack a newborn HCC, revised their age-sex assignment to “Age 1, Male” (Section II, Section V, Table 1, and Table 8).

Removed the DIAGNOSIS_VERSION_CODE variable previously referred to in Section III because the user no longer needs to distinguish between ICD-9 and ICD-10 in the same year.

Updated Table 9 Model Factors for the 2016 benefit year (using 2011, 2012, and 2013 MarketScan data).

The risk adjustment methodology consists of concurrent risk adjustment models, one for each combination of metal level (platinum, gold, silver, bronze, and catastrophic) and age group (adult, child, infant). This document provides the detailed information needed to calculate risk scores given individual diagnoses.

We note that these instructions and the corresponding software contain only ICD-10-CM codes. The United States implemented ICD-10-CM diagnosis codes on October 1, 2015 (which was the beginning of FY2016). All CY2016 claims will use this updated version of the Table 3 ICD-10 to HHS-Condition Categories (CC) Crosswalk, which features both FY2016 and FY2017 ICD-10 diagnosis codes. Claims corresponding to dates of service occurring from January-September 2016 should only contain codes valid in FY2016. Claims corresponding to dates of services occurring from October-December 2016 should only contain codes valid in FY2017. The software was updated to describe validity checks to ensure diagnosis codes are valid for a given...
fiscal year. Although the diagnosis code validity checks are specific to the fiscal year, the MCE age and sex edits in this software use a combined CY2016 version rather than separate fiscal year-specific specific sets.

The model instructions are based on the methodology described in the final notice of benefit and payment parameters. Please direct questions regarding the model instructions to HHS HCC Risk Adjustment Models at hhshccraops@cms.hhs.gov. This mailbox will be used only to answer questions pertaining to operations of the HHS risk adjustment model as posted to this site. We look forward to assisting with inquiries pertaining to your risk adjustment program operations using the HHS-HCC risk adjustment models for the 2016 benefit year.

CMS has created two versions of software (SAS software and HHS-developed risk adjustment model algorithm software) and software instructions for issuers to use with their enrollment data to simulate their enrollee populations’ 2016 benefit year risk scores within the risk adjustment model. This software is being issued only as supplemental guidance for issuers to better understand and simulate the calculation of plan liability risk scores for their enrollees.

This software is not a required prerequisite to submitting claims data to the EDGE server for risk adjustment, nor is it a requirement of the risk adjustment program. Furthermore, issuers should not use this software to filter their own claims prior to submitting claims data to the EDGE server. The EDGE server software may have several additional layers of operational rules. The algorithm software merely provides a simulation to calculate enrollees’ risk scores.

List of Tables
Table 1. Model Membership
Table 2. CPT/HCPCS Included List
Table 3. ICD-10 to HHS-Condition Categories (CC) Crosswalk
Table 4. HHS-Hierarchical Condition Categories (HCC) Hierarchies
Table 5. Age-Sex Variables
Table 6. Additional Adult Variables
Table 7. Additional Child Variables
Table 8. Additional Infant Variables
Table 9. Model Factors

Terminology: In this document, the abbreviations HHS-HCC and HCC are used interchangeably for Health and Human Services Hierarchical Condition Categories. The abbreviations HHS-CC and CC are used interchangeably for HHS Condition Categories. The abbreviations ICD-10 and ICD-10-CM are used interchangeably for International Classification of Diseases, 10th Revision, Clinical Modification.

I. Introduction
The risk adjustment program transfers funds from plans with lower than average actuarial risk to plans with higher than average actuarial risk using a specified risk adjustment methodology. A
risk adjustment methodology includes a risk adjustment model, a determination of plan average actuarial risk, and a calculation of payments and charges. The latter two elements are referred to by HHS as the payment transfer formula. This document provides a detailed description of the HHS risk adjustment models, and enables interested parties to develop software to determine risk scores given individual diagnoses.

This document does not modify the methodology finalized in the HHS Notice of Benefit and Payment Parameters for 2016, Final Rule (80 FR 10749). Please note that the models described herein were finalized in the final rule.

The following is a description of the HHS risk adjustment models for the 2016 benefit year. This description includes a narrative and accompanying tables for calculating the risk scores from diagnoses in the HHS risk adjustment models. The HHS risk adjustment models calculate risk scores by summing an enrollee’s factors (age/sex, HCCs, and interaction terms). This description shows, in detail, how individual diagnoses are assigned to HCCs, and then allows the user to build individual risk scores from those diagnoses.

These instructions outline the steps needed to produce individual risk scores from the HHS risk adjustment models.

The HHS risk adjustment methodology includes risk adjustment models based on age, as detailed in Table 1 Model Membership. Adult scores are calculated for enrollees whose age is equal to or greater than 21 using the adult model set. Child scores are calculated for enrollees age 2 – 20 using the child model set. Infant scores are calculated for enrollees age 0 – 1 using the infant model set. Because HHS models predict plan liability, there are 5 models within each age group model set – one each for platinum, gold, silver, bronze, and for the individual market only, catastrophic plans.

The following five sections describe the algorithm for creating risk scores. Any algorithm developed to calculate risk scores should prepare the diagnosis-level file and use it to assign HCCs for each person. This is described in Section II and includes the list of acceptable CPT/HCPCS codes listed in Table 2. Section III and Section IV, respectively, identify data inputted to and outputted from the risk adjustment model. Finally, Section V describes the algorithm to produce risk scores (i.e., outputs). First, the algorithm should crosswalk acceptable diagnoses to HHS Condition Categories (CCs). Then the algorithm should create HHS Hierarchical Condition Categories (HCCs) by imposing hierarchies on the HHS-CCs. For persons without claims or encounter records, zeros are assigned to all HHS-CCs and HHS-HCCs. After HHS-HCCs are created, the algorithm should compute predicted scores using the factors from the adult, child, and infant HHS risk adjustment regression models. This information is referenced in Tables 3-9.

The factors from the following regression models are used to produce risk scores:

1 A risk adjustment methodology also includes a data collection approach and a schedule for program operation. These elements are not discussed in this document.

- Adult regressions
 - Adult platinum
 - Adult gold
 - Adult silver
 - Adult bronze
 - Adult catastrophic
- Child regressions
 - Child platinum
 - Child gold
 - Child silver
 - Child bronze
 - Child catastrophic
- Infant regressions
 - Infant platinum
 - Infant gold
 - Infant silver
 - Infant bronze
 - Infant catastrophic

II. Creation of diagnosis-level file according to source of diagnoses allowable for risk adjustment

The diagnosis-level input file (Section III) should include ICD-10-CM diagnosis codes used for risk adjustment, listed in Table 3, ICD-10 to HHS-Condition Categories (CC) Crosswalk. The user must evaluate each claim or encounter record to determine whether the claim or record’s diagnoses are included in the diagnosis file to be inputted to the algorithm or software. Encounter records normally report dates, provider or bill types, diagnoses and procedures, and other information, though they may not have payment information. This section on the diagnosis file preparation explains how each record is evaluated to determine whether or not the record’s diagnoses are to be used for CC/HCC creation. It is the user’s responsibility to create the diagnosis-level file according to the filtering logic below. This document provides filtering instructions and a list of the 2015 (for historical data purposes) and 2016 CPT/HCPCS codes that define service or procedure types that identify acceptable sources of diagnoses for risk adjustment. However, the user must create the diagnosis-level file for input to the risk adjustment algorithm; the data set is not created by the algorithm.

NOTE: CMS stated that supplemental diagnosis codes may be submitted in certain circumstances. These instructions and the software do not address the addition of supplemental diagnosis codes. Therefore, risk score output from this software will not account for inclusion of supplemental diagnoses.

Only ICD-10-CM diagnosis codes from sources allowable for risk adjustment should be included in the diagnosis-level file. ICD-10 codes that are not listed in Table 3 may be included in the
The diagnosis-level input file should include diagnoses from claims/encounter records with discharge dates or through dates within the benefit year. Though the term “claim” is used in the steps below, the steps apply equally to encounter records. For the EDGE server, only claims with discharge diagnoses are used for HHS risk adjustment.

1. Professional source of diagnosis
 a. For professional records, use diagnoses from records that have at least one line item with an acceptable CPT/HCPCS code (Table 2). If there is at least one acceptable line on the record, use all the header diagnoses. There are three possible values for CPT/HCPCS codes in columns C and D:
 i. yes = code is acceptable in that calendar year
 ii. no = code is not acceptable in that calendar year
 iii. N/A = code is not in existence in that calendar year
 b. For professional records, if a line item has an acceptable CPT/HCPCS code, use all diagnoses from the line item.
 c. If there are no acceptable service lines on the record, do not use any of the diagnoses for risk adjustment.

2. Inpatient facility source of diagnosis
 a. Use all header diagnoses from records where facility bill type code equals one of the following:
 i. 111 (inpatient admit through discharge); or
 ii. 117 (inpatient replacement of prior claim).
 b. There is no procedure screen for inpatient facility record types.

3. Outpatient facility source of diagnosis
 a. Restrict records to those with facility bill type code equal to:
 i. 131 (hospital outpatient admit though discharge); or
 ii. 137 (hospital outpatient replacement of prior claim); or
 iii. 711 (rural health clinic admit though discharge); or
 iv. 717 (rural health clinic replacement of prior claim); or
 v. 761 (community mental health center admit though discharge); or

3 If the user conducts fiscal year code validity checks described later in this section, only codes valid for risk adjustment will be included in the final diagnosis-level file.
vi. 767 (community mental health center replacement of prior claim); or
vii. 771 (federally qualified health center admit though discharge); or
viii. 777 (federally qualified health center replacement of prior claim); or
ix. 851 (critical access hospital admit though discharge); or
x. 857 (critical access hospital replacement of prior claim).

b. For records with at least one acceptable CPT/HCPCS code (Table 2) on a service line, use all header diagnoses. Otherwise, do not use the diagnoses for risk adjustment.

Fiscal year code validity: Section III further describes the diagnosis-level input data file. After creating that file, the user will have the variables needed to conduct fiscal year validity checks. Table 3 identifies the fiscal year(s) in which the diagnosis codes used for risk adjustment are valid. The user should check that for a given diagnosis (variable DIAG) and service date (variable DIAGNOSIS_SERVICE_DATE), the diagnosis code has a Y in the corresponding Table 3 Code Valid column. ICD-10 diagnosis codes with service dates of January 1, 2016 – September 30, 2016 should have a Y in the Code Valid in FY2016 column; otherwise, the user should exclude them. ICD-10 diagnosis codes with service dates of October 1, 2016 – December 31, 2016 should have a Y in the Code Valid in FY2017 column; otherwise, the user should exclude them.

Note on bundled claims for mother and newborn infant: In practice, some hospital claims for childbirth include both the mother’s record and the newborn infant’s record on the same claim (diagnoses and procedure codes). Because there are separate adult, child, and infant risk adjustment models and some of the diagnosis codes may not be distinguishable between mother and infant on bundled claims, **any bundled claims should be redefined as two separate records whenever possible (mother and infant, each with a separate ID, sex, and age) in order for the diagnoses to be appropriately included in the input dataset and used for appropriately calculating risk scores.**

The user will need to independently create a program to detect any bundled claims and redefine them (i.e., it is not part of these instructions). For example, a bundled claim detection program would need to identify enrollees with a claim containing the following elements:

Mother is the enrollee:
- AGE_LAST >= 2 (an age corresponding to the child or adult models; more specifically age should be appropriate for a maternity diagnosis)\(^4\) and
- ICD-10 diagnoses corresponding to a completed pregnancy HCC (HHS-HCC 207 or 208 or 209) and
- ICD-10 diagnoses corresponding to a newborn HCC (HHS-HCC 242 or 243 or 244 or 245 or 246 or 247 or 248 or 249).

Infant is the enrollee:
- AGE_LAST = 0 (an age corresponding to the infant model; more specifically age is appropriate for a newborn diagnosis at birth) and

\(^4\) Section III of this document identifies the two age variables used in the software and specifies when each is used. Section V includes the detailed algorithm for creation of HCCs.
• ICD-10 diagnoses corresponding to a completed pregnancy HCC (HHS-HCC 207 or 208 or 209) and
• ICD-10 diagnoses corresponding to a newborn HCC (HHS-HCC 242 or 243 or 244 or 245 or 246 or 247 or 248 or 249).

See Table 3, ICD-10 to HHS-Condition Categories (CC) Crosswalk, for diagnosis codes corresponding to the completed pregnancy and newborn HCCs.

For purposes of creating the diagnosis-level input file (refer to Section III), if bundled claims will not be detected and redefined, enrollees with bundled claims should be included. If the enrollee is a female with an age appropriate for a maternity diagnosis, then the diagnoses on the bundled claim are assumed to correspond to the mother’s enrollee ID. If the enrollee is age 0, then the diagnoses on the bundled claim are assumed to correspond to the infant’s enrollee ID. All diagnoses on a bundled claim that could apply to either the mother or the infant (i.e., diagnoses that do not require passing an age/sex edit) are assumed to apply to the enrollee’s ID. All HHS-HCCs that are valid for the mother or infant (based on diagnoses that pass or do not require age/sex edits) will be used to compute the enrollee’s risk score; and all diagnoses that do not pass age/sex edits (i.e., newborn diagnosis codes for the mother; pregnancy diagnosis codes for the infant) will be ignored.\(^5\) Table 1, rows 11-20, provides an algorithm for including these enrollees.

Infants with a record in the person-level file (refer to Section III) that cannot be matched with a claim or who do not have claims will have no diagnoses in the diagnosis-level file. Infants without diagnoses will be assigned to the lowest severity category and the Age 1 maturity category for infants as detailed in Table 8, rows 122 and 129. Age 0 infants with diagnoses but who lack a newborn HCC will be assigned to the corresponding severity category and the Age 1 maturity category for infants as detailed in Table 8, rows 5-122 and 129.\(^6\) Male infants will also have the male demographic factor assigned. Age 0 male infants who lack a newborn HCC will have their demographic factor reassigned to Age 1.

III. Input data files for HHS-CC/HCC variable creation
This section describes the two input data files needed to create HHS-CC and HHS-HCC grouping and regression variables—a person-level file and a diagnosis-level file. It is the responsibility of the user to create these input data files with the variables listed in this section.

Note on CSR_INDICATOR

\(^5\) This software does not flag or otherwise identify diagnoses that do not pass age/sex edits. Software users may want to create a diagnosis-level flag for bundled claims that identifies rejected diagnoses, or create a person-level flag for bundled claims that identifies enrollees with at least one rejected diagnosis submitted.

\(^6\) This change was described in the 2016 final Payment Notice (80 FR 10761): https://www.gpo.gov/fdsys/pkg/FR-2015-02-27/pdf/2015-03751.pdf. We believe that these infants should be assigned to age 1 in situations where the issuer did not pay the birth costs during the plan year. For many age 0 infants without birth HCCs, the birth could have occurred in the prior year or was paid for by a different issuer. We will continue to treat infants with cross year discharge dates as age 0 (see Section III, 1.d.iii), unless they do not have birth codes, in which case we would assign them through this process.
In operations, cost-sharing reduction (CSR) plan variations and premium assistance Medicaid Alternative plans (i.e., private options) will be identified by the Health Insurance Oversight System (HIOS) variant ID. Listed below are the codes that will be used to identify the plan variation. Please note that unlike the risk adjustment software person-level CSR indicator, the HIOS variant ID is a plan-level indicator.

<table>
<thead>
<tr>
<th>Cost-Sharing Reduction (CSR) Level</th>
<th>HIOS Variant ID</th>
<th>CSR RA Factor</th>
<th>RA Software Person-level CSR Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR: 94% AV Silver Plan Variation</td>
<td>06</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>CSR: 87% AV Silver Plan Variation</td>
<td>05</td>
<td>1.12</td>
<td>2</td>
</tr>
<tr>
<td>CSR: 73% AV Silver Plan Variation</td>
<td>04</td>
<td>1.00</td>
<td>3</td>
</tr>
<tr>
<td>CSR: Zero Cost Sharing – Platinum</td>
<td>02</td>
<td>1.00</td>
<td>4</td>
</tr>
<tr>
<td>CSR: Zero Cost Sharing – Gold</td>
<td>02</td>
<td>1.07</td>
<td>5</td>
</tr>
<tr>
<td>CSR: Zero Cost Sharing – Silver</td>
<td>02</td>
<td>1.12</td>
<td>6</td>
</tr>
<tr>
<td>CSR: Zero Cost Sharing – Bronze</td>
<td>02</td>
<td>1.15</td>
<td>7</td>
</tr>
<tr>
<td>CSR: Limited Cost Sharing – Platinum</td>
<td>03</td>
<td>1.00</td>
<td>8</td>
</tr>
<tr>
<td>CSR: Limited Cost Sharing – Gold</td>
<td>03</td>
<td>1.07</td>
<td>9</td>
</tr>
<tr>
<td>CSR: Limited Cost Sharing – Silver</td>
<td>03</td>
<td>1.12</td>
<td>10</td>
</tr>
<tr>
<td>CSR: Limited Cost Sharing – Bronze</td>
<td>03</td>
<td>1.15</td>
<td>11</td>
</tr>
<tr>
<td>CSR: Premium Assistance Medicaid Alternative Plan w/94% AV Silver Plan</td>
<td>36</td>
<td>1.12</td>
<td>12</td>
</tr>
<tr>
<td>CSR: Premium Assistance Medicaid Alternative Plan w/Zero Cost Sharing - Silver</td>
<td>32</td>
<td>1.12</td>
<td>13</td>
</tr>
<tr>
<td>Non-CSR/unknown CSR</td>
<td>00</td>
<td>1.00</td>
<td>0</td>
</tr>
</tbody>
</table>

1. **PERSON file** – a person-level file of demographic and enrollment information
 a. **ENROLID** (or other person identification variable)
 i. character or numeric type and unique to an individual
 b. **SEX**
 i. one character, 1=male; 2=female
 c. **DOB**
 i. 8 character numeric field, provides the enrollee’s date of birth
 ii. Used to calculate AGE_AT_DIAGNOSIS for MCE diagnosis code age edits
 d. **AGE_LAST**
 i. Age as of last day of enrollment in benefit year
 ii. Used for all risk adjustment purposes except MCE diagnosis code age edits
 iii. For infants born in the previous year but not discharged until the benefit year, users should substitute Age 0 for Age 1 in AGE_LAST.
 e. **METAL**
i. Enrollee’s metal level
 ii. Allowable values: platinum, gold, silver, bronze, catastrophic (only 1 of these values)

f. CSR_INDICATOR
 i. Person-level indicator. Enrollees who qualify for cost-sharing reductions or those enrolled in premium assistance Medicaid alternative plans will be assigned CSR_INDICATOR =1-13. Non-CSR recipients will be assigned CSR_INDICATOR = 0.
 1. 1 = Enrollees in 94% AV Silver Plan Variation
 2. 2 = Enrollees in 87% AV Silver Plan Variation
 3. 3 = Enrollees in 73% AV Silver Plan Variation
 4. 4 = Enrollee in Zero Cost Sharing Plan Variation of Platinum Level QHP
 5. 5 = Enrollee in Zero Cost Sharing Plan Variation of Gold Level QHP
 6. 6 = Enrollee in Zero Cost Sharing Plan Variation of Silver Level QHP
 7. 7 = Enrollee in Zero Cost Sharing Plan Variation of Bronze Level QHP
 8. 8 = Enrollee in Limited Cost Sharing Plan Variation of Platinum Level QHP
 9. 9 = Enrollee in Limited Cost Sharing Plan Variation of Gold Level QHP
 10. 10 = Enrollee in Limited Cost Sharing Plan Variation of Silver Level QHP
 11. 11 = Enrollee in Limited Cost Sharing Plan Variation of Bronze Level QHP
 12. 12 = Enrollee in a Premium Assistance Medicaid Alternative Plan with 94% AV Silver Plan Variation
 13. 13 = Enrollee in a Premium Assistance Medicaid Alternative Plan with Zero Cost Sharing Plan Variation of Silver Level QHP
 14. 0 = Non-CSR recipient and enrollees with unknown CSR

2. DIAG file – a diagnosis-level input file of diagnoses
 a. ENROLID (or other person identification variable that must be the same as in PERSON file)
 i. person identifier of character or numeric type and unique to an individual
 b. DIAG
 i. ICD-10-CM diagnosis code, 7 character field, no periods, left justified. Codes should be to the greatest level of available specificity. (Age and sex edits for diagnoses are applied in Part V, step 1 to ensure diagnoses are appropriate for the age and sex of the enrollee.) Only diagnoses from allowable sources (Part II) should be included in the diagnosis-level file.
 c. DIAGNOSIS_SERVICE_DATE
 i. 8 character numeric field, provides the date of the diagnosis

7 Please note that in operation, this information can not include personally identifiable information.
As described in Part II, this variable can be used with DIAG and Table 3 to check that a diagnosis code is valid for a given fiscal year.

d. AGE_AT_DIAGNOSIS
 i. Age as of the diagnosis service date, calculated using DOB from PERSON file and DIAGNOSIS_SERVICE_DATE
 ii. Used only for MCE diagnosis code age edits

IV. Variables output by the algorithm
This section describes the variables that are outputted by the HHS risk adjustment model. Any software or algorithms developed from the tables output a person-level file and need to be capable of adding any person-level variables that the user wants to keep.

The following variables can be specified:
1. Any person-level variables from the original person-level file
2. Demographic age/sex variables created by the algorithm
3. HHS-HCCs created by the algorithm
4. HHS-CCs (condition categories assigned before hierarchies are applied)
5. HHS-HCC groups and HHS-HCC interactions created by the algorithm
6. Infant model maturity categories, reassigned age/sex variables, severity level categories, and maturity by severity level interactions created by the algorithm
7. Score variables:
 a. Adult Models
 i. SCORE_ADULT_PLATINUM
 ii. SCORE_ADULT_GOLD
 iii. SCORE_ADULT_SILVER
 iv. SCORE_ADULT_BRONZE
 v. SCORE_ADULT_CATASTROPHIC
 b. Child Models
 i. SCORE_CHILD_PLATINUM
 ii. SCORE_CHILD_GOLD
 iii. SCORE_CHILD_SILVER
 iv. SCORE_CHILD_BRONZE
 v. SCORE_CHILD_CATASTROPHIC
 c. Infant Models
 i. SCORE_INFANT_PLATINUM
 ii. SCORE_INFANT_GOLD
 iii. SCORE_INFANT_SILVER
 iv. SCORE_INFANT_BRONZE
 v. SCORE_INFANT_CATASTROPHIC
8. CSR-adjusted score variables:
 a. Adult Models
 i. CSR_ADJUSTED_SCORE_ADULT_PLATINUM
 ii. CSR_ADJUSTED_SCORE_ADULT_GOLD
 iii. CSR_ADJUSTED_SCORE_ADULT_SILVER
 iv. CSR_ADJUSTED_SCORE_ADULT_BRONZE

11
v. CSR_ADJUSTED_SCORE_ADULT_CATASTROPHIC

b. Child Models
 i. CSR_ADJUSTED_SCORE_CHILD_PLATINUM
 ii. CSR_ADJUSTED_SCORE_CHILD_GOLD
 iii. CSR_ADJUSTED_SCORE_CHILD_SILVER
 iv. CSR_ADJUSTED_SCORE_CHILD_BRONZE
 v. CSR_ADJUSTED_SCORE_CHILD_CATASTROPHIC

c. Infant Models
 i. CSR_ADJUSTED_SCORE_INFANT_PLATINUM
 ii. CSR_ADJUSTED_SCORE_INFANT_GOLD
 iii. CSR_ADJUSTED_SCORE_INFANT_SILVER
 iv. CSR_ADJUSTED_SCORE_INFANT_BRONZE
 v. CSR_ADJUSTED_SCORE_INFANT_CATASTROPHIC

9. Final unadjusted and CSR-adjusted score variables depending on the enrollee’s metal level and CSR indicator, including enrollment in premium assistance Medicaid alternative plans.
 a. Adult scores
 i. SCORE_ADULT
 ii. CSR_ADJUSTED_SCORE_ADULT
 b. Child scores
 i. SCORE-child
 ii. CSR_ADJUSTED_SCORE_CHILD
 c. Infant scores
 i. SCORE_INFANT
 ii. CSR_ADJUSTED_SCORE_INFANT

The user should determine which of the scores is appropriate for the enrollee depending upon the age and plan benefit design of that enrollee.

V. Algorithm to produce output
This section describes the process by which the outputs identified in Section IV are created. The algorithm to produce risk scores can be segmented into five parts—HHS-CC and HHS-HCC creation, model variable creation, access factors table, unadjusted score calculation, and CSR-adjusted score calculation.

Step 1: HHS-CC and HHS-HCC creation. This first step should use Table 3 for HHS-CC creation and Table 4 for HHS-HCC creation.

Table 3 crosswalks ICD-10 codes to the HHS-Condition Categories (CCs) in the risk adjustment models. This table incorporates the ICD-10 Medicare Code Edits (MCEs) for age and sex, the further specified CC age and sex splits, and the creation of CCs and additional CCs.8

Explanations of the fields in Table 3 are provided below:
- OBS (column A): Observations, numeric count from 1 to 8,205 of the code list.

8 The CC age and sex splits relate to how specific conditions are reclassified by age or sex within the full HHS-HCC classification. These reassignments are not related to age or sex coding guidelines.
• ICD10 (column B): Only ICD-10 codes assigned to HCCs in the risk adjustment models are included in this crosswalk. All other ICD-10 codes correspond to HCCs not included in the risk adjustment models and are not used to calculate risk scores.

• ICD10 Label (column C): Full ICD-10 code labels.

• Code Valid columns (columns D and E): Identifies the fiscal year(s) (column D FY2016; column E FY2017) in which the ICD-10 codes are valid. There are two possible values in columns D and E:
 o Y = Yes, code is valid ICD-10 code in that fiscal year
 o N = No, code is not valid ICD-10 code in that fiscal year; code may not yet be in existence or code was deleted in that fiscal year

• FY2016 MCE Age Condition [use AGE_AT_DIAGNOSIS] (column F), FY2017 MCE Age Condition [use AGE_AT_DIAGNOSIS] (column H), and CY2016 (FY16/FY17) MCE Age Condition [use AGE_AT_DIAGNOSIS] (column J): Checks that a person with a diagnosis code has the appropriate age for the diagnosis. The specific fiscal year versions are presented for informational purposes. The user should use the CY2016 version which covers both fiscal years (column J) to match the MCE Age Condition version being used in Operations. Conditions listed in this column are required for the CC to be assigned.
 o Newborn diagnosis: Age of 0 years
 o Pediatric diagnosis: Age range is 0-17 years inclusive
 o Maternity diagnosis: Age range is 12-55 years inclusive
 o Adult diagnosis: Age range is 15 years or older

• FY2016 MCE Sex Condition (column G), FY2017 MCE Sex Condition (column I), and CY2016 (FY16/FY17) MCE Sex Condition (column K): Checks that a person with a diagnosis code has the appropriate sex for the diagnosis. The specific fiscal year versions are presented for informational purposes. The user should use the CY2016 version which covers both fiscal years (column K) to match the MCE Sex Condition version being used in Operations. Conditions listed in this column are required for the CC to be assigned.
 o Female indicates the diagnosis is only appropriate for females.
 o Male indicates the diagnosis is only appropriate for males.

• CC Age Split [use AGE_LAST] (column L): Identifies diagnosis codes whose assignments to CCs in the risk adjustment models change depending on the age of the enrollee. ICD-10 codes assigned by age to more than one CC in the risk adjustment models are listed more than once. In those cases, the age splits are mutually exclusive and enrollees are assigned to only one CC for the given diagnosis.

• CC Sex Split (column M): Identifies diagnosis codes whose assignments to CCs in the risk adjustment models change depending on the sex of the enrollee. ICD-10 codes assigned by sex to more than one CC in the risk adjustment models are listed more than once. Enrollees are assigned to only one CC for the given diagnosis.

• CC (column N): Identifies the CC in the risk adjustment models that a person with the ICD-10 code who meets the MCE conditions and CC splits is assigned.

• Additional CC (column O): Identifies the additional CC in the risk adjustment model that a person with the ICD-10 code who meets the MCE conditions and CC Age or Sex splits is assigned. Additional CCs are assigned when the ICD-10 code is assigned to more than one HCC in the risk adjustment models because it contains
more than one clinical concept (such as an ICD-10 diagnosis code that encompasses both diabetes and a complication of diabetic peripheral angiopathy with gangrene).

- Footnote (column P): Identifies applicable footnotes for the ICD-10 code. Notes begin on row 8211 of the Excel table with the line “Notes:” and should not be imported by any program.

Table 4 provides the hierarchy rules to apply to the CCs to create HHS-HCCs. Explanations of the fields in Table 4 are provided below:

- OBS (column A): Observations, numeric count from 1 to 127 of HCCs in the HHS risk adjustment models.
- HCC (column B): Only HCCs in the risk adjustment models are identified. HCCs are created when hierarchies are applied to CCs.
- Set to 0 HCCs (column C): Hierarchy exclusions for each HCC are listed. Users should set the HCCs in this column to 0 when a person has the HCC listed in column B.
- HCC Label (column D): Full HCC labels.

Use Table 3 and Table 4 to create CCs and HHS-HCCs:

1. Create CC and HHS-HCC 0/1 indicator variables for each HCC in the risk adjustment models listed in Table 4 (Example: CC001, CC002, CC003, CC004, CC006, CC008 .. CC254; HHS_HCC001, HHS_HCC002 ... HHS_HCC254). Initially, set CCs and HHS-HCCs to 0 for each person.
 a. Perform ICD-10 Medicare Code Edits (MCEs) for age and sex (use CY2016 MCE Age Condition and MCE Sex Condition columns in Table 3). Use AGE_AT_DIAGNOSIS for applying MCE age edits.
 b. If a person meets the MCE conditions, apply CC Age Split and CC Sex Split to create CC (set to 1) using crosswalk of ICD-10 to CCs (use CC Age Split, CC Sex Split, and CC columns in Table 3). Use AGE_LAST for CC age splits.
 c. Create additional CCs (set to 1) using Additional CC column.
2. If there are any acceptable diagnoses for a person, then:
 a. Set HCC to 1 when corresponding CC is set to 1.
 b. Set the HCCs in column C to 0 when a person has the HCC listed in column B.
3. Create HHS-HCCs after all diagnoses for a person are processed and CC variables are created using hierarchies provided in Table 4.
 a. Set HCC to 1 when corresponding CC is set to 1.
 b. Set the HCCs in column C to 0 when a person has the HCC listed in column B set to 1.

Step 2: Model variable creation.
This step should use Table 5 for demographic variable creation, Table 6 for additional adult model variables, Table 7 for additional child model variables, and Table 8 for additional infant model variables.

Explanations of the fields in Tables 5-8 are provided below:

- Column A identifies the model set in which the variable is used (adult, child or infant).
- Column B identifies the variable name.
Variables must be assigned values in the same order as defined in Tables 5, 6, 7, and 8. For example, in Table 6, assign a value to variable SEVERE_V3 first, then the HCC group variables, then the severe illness interactions, then the severe illness interaction groups.

Variable creation:
1. Create demographic variables needed for score calculation using Table 5.
 a. A person’s age and sex are used to create 1 of 28 mutually exclusive age-sex variables (18 for adult models, 8 for child models, 2 for infant models). Use AGE_LAST.
 b. Because the infant model is computed with females as the reference group for the age-sex demographic variables, there are no separate age-sex demographic variables for females age 0 or 1. Note that if male age 0 infants are assigned to Age 1 because they lack a newborn HCC, their age/sex demographic variable will be reassigned to Age 1 using Table 8.
 c. Adult age-sex variables are listed in rows 8-25.
 d. Child age-sex variables are listed in rows 27-34.
 e. Infant age-sex variables are listed in rows 36 and 37.
2. For the adult model, create the severe illness indicator variable using Table 6.
 a. The severe illness indicator variable, SEVERE_V3, is created when an adult has at least 1 of 8 HHS-HCCs that indicate a severe illness. Rows 5-12 of column E in Table 6 identify these 8 HHS-HCCs.
 i. SEVERE_V3 is initially set to 0 for each adult and is set equal to 1 if the adult has at least 1 of the 8 HHS-HCCs.
3. For the adult and child models – create HCC groups using Tables 6 and 7.
 a. HCC groups are effectively treated as single HHS-HCCs in the models. The HCC groups are assigned variables GXX, where XX is the group number.
 b. For the adult models:
 i. There are 17 adult HCC groups. The group variable names are listed in rows 14-67 of column B of Table 6.
 ii. Initially create the 17 HCC groups for adults and set to 0 for each person.
 iii. The HHS-HCCs in an HCC group are listed in column E of Table 6 starting in row 14.
 iv. A variable for an HCC group is set to equal 1 if an adult has at least one of the HHS-HCCs in a given adult HCC group.
 c. For the child models:
 i. There are 17 child HCC groups. The HCC group variable names are listed in rows 5-59 of column B of Table 7.
 ii. Initially create the 17 HCC groups for children and set to 0 for each person.
 iii. The HHS-HCCs in an HCC group are found in column E of Table 7 starting in row 5.
iv. A variable for an HCC group is set to equal 1 if a child has at least one of the HHS-HCCs in a given child HCC group.

4. For the adult models – create HHS-HCC interaction variables using Table 6.
 a. The variable SEVERE_V3 is used to create the severe illness indicator in HHS-HCC or HCC group interactions. There are 16 interactions identified in rows 71-86 of Table 6.
 i. Interaction variables are initially set to 0 for each adult.
 ii. The variable for an interaction is set to 1 if an adult has SEVERE_V3=1 and the HHS-HCC or HCC group in the interaction =1.
 b. The interactions are aggregated to create two severe illness interaction groups based on the predicted expenditures of the interactions that are in the models.
 i. Variables INT_GROUP_H and INT_GROUP_M are set to 0 for each adult.
 ii. INT_GROUP_H is set to 1 if an adult has at least 1 of the 9 high-cost interactions. The variable and interactions are found in rows 88-96 of Table 6.
 iii. INT_GROUP_M is set to 1 if an adult has at least 1 of the 7 medium-cost interactions and INT_GROUP_H is set to 0. The variable and interactions are found in rows 98-104 of Table 6.

5. For the infant models – create maturity and severity categories, reassign age-sex variable if needed, and create maturity by severity level interaction variables using Table 8.
 a. Table notation: Severity category and maturity category variables (which are not included in the regression, but are used to create regression interaction variables) use the “IHCC_” prefix designating them as Infant variables. Examples: IHHC_Severity5; IHCC_Extremely_Immature.
 b. Create 5 severity level category 0/1 indicator variables based on HHS-HCC flags (See Table 8, rows 5-116). Set to 1 if any of the corresponding HHS-HCC variables is set to 1.
 i. Severity Level 5 (Highest)
 ii. Severity Level 4
 iii. Severity Level 3
 iv. Severity Level 2
 v. Severity Level 1 (Lowest)
 c. Apply hierarchies so that each age 0 or age 1 infant has only a single severity level variable, the highest qualifying level, set to 1 (see Table 8, rows 118-122). Note that infants lacking any of the HHS-HCCs corresponding to severity levels are assigned to Severity Level 1 (Lowest).
 d. Create 5 maturity category 0/1 indicator variables set to 1 based on age only if age 1, and on age as well as newborn HHS-HCC flags if age 0 (see Table 8, rows 124-129). Note that age 0 infants lacking a newborn HHS-HCC (242-249) are assigned to Age 1.
 i. Age 1
 ii. Extremely Immature
 iii. Immature
iv. Premature/Multiples
v. Term
e. Apply hierarchies so that each age 0 or age 1 infant has only a single maturity variable set to 1 (see Table 8, rows 130-132).
f. Reassign male age 0 infants lacking a newborn HHS-HCC to the Age 1 age-sex variable (see Table 8, row 134).
g. Create 25 maturity by severity level interactions (0/1) using the 5 maturity category variables and 5 severity level category variables (see Table 8, rows 136-160). These are mutually-exclusive interactions—each infant will have only one maturity by severity level interaction set to 1.
 i. Extremely_Immature_x_Severity5
 ii. Extremely_Immature_x_Severity4
 iii. Extremely_Immature_x_Severity3
 iv. Extremely_Immature_x_Severity2
 v. Extremely_Immature_x_Severity1
 vi. Immature_x_Severity5
 vii. Immature_x_Severity4
 viii. Immature_x_Severity3
 ix. Immature_x_Severity2
 x. Immature_x_Severity1
 xi. Premature_Multiples_x_Severity5
 xii. Premature_Multiples_x_Severity4
 xiii. Premature_Multiples_x_Severity3
 xiv. Premature_Multiples_x_Severity2
 xv. Premature_Multiples_x_Severity1
 xvi. Term_x_Severity5
 xvii. Term_x_Severity4
 xviii. Term_x_Severity3
 xix. Term_x_Severity2
 xx. Term_x_Severity1
 xxi. Age1_x_Severity5
 xxii. Age1_x_Severity4
 xxiii. Age1_x_Severity3
 xxiv. Age1_x_Severity2
 xxv. Age1_x_Severity1

Step 3: Access factors in Table 9.
 1. For the adult models, use adult factors in rows 4-167 for each of the metal levels (columns D-H).
 2. For the child models, use child factors in rows 169-320 for each of the metal levels (columns D-H)
 3. For the infant models, use infant factors in rows 322-348 for each of the metal levels (columns D-H)

Step 4: Unadjusted score calculation (using directions in Tables 6-8, variables created in Tables 5-8, and factors from Table 9).
1. For each adult, create an adult model score for the metal level in which that adult is enrolled (corresponding to scores in Part IV).
 a. Create scores for each metal level using directions in rows 106-111 in Table 6.
 i. SCORE_ADULT_PLATINUM
 ii. SCORE_ADULT_GOLD
 iii. SCORE_ADULT_SILVER
 iv. SCORE_ADULT_BRONZE
 v. SCORE_ADULT_CATASTROPHIC
 b. The score for each of the above variables is the sum of the factors of the corresponding metal level in Table 9 for all variables set to 1 for that adult: demographic variable, any HHS-HCCs, any HCC groups, and a severe illness interaction group if applicable.
 i. SCORE_ADULT_PLATINUM uses factors from column D
 ii. SCORE_ADULT_GOLD uses factors from column E
 iii. SCORE_ADULT_SILVER uses factors from column F
 iv. SCORE_ADULT_BRONZE uses factors from column G
 v. SCORE_ADULT_CATASTROPHIC uses factors from column H
 c. Identify the metal level in which the adult is enrolled (Table 1).
 d. Create an adult model score SCORE_ADULT for the metal level in which the adult is enrolled using directions in rows 134-135 in Table 6.

2. For each child create a child model score for the metal level in which that child is enrolled (corresponding to scores in Part IV).
 a. Create scores for each metal level using directions in rows 63-67 in Table 7.
 i. SCORE_CHILD_PLATINUM
 ii. SCORE_CHILD_GOLD
 iii. SCORE_CHILD_SILVER
 iv. SCORE_CHILD_BRONZE
 v. SCORE_CHILD_CATASTROPHIC
 b. The score for each of the above variables is the sum of the factors of the corresponding metal level in Table 9 for all variables set to 1 for that child: demographic variable, any HHS-HCCs, and any HCC groups.
 i. SCORE_CHILD_PLATINUM uses factors from column D
 ii. SCORE_CHILD_GOLD uses factors from column E
 iii. SCORE_CHILD_SILVER uses factors from column F
 iv. SCORE_CHILD_BRONZE uses factors from column G
 v. SCORE_CHILD_CATASTROPHIC uses factors from column H
 c. Identify the metal level in which the child is enrolled (Table 1).
 d. Create a child model score SCORE_CHILD for the metal level in which the child is enrolled using directions in rows 90-91 in Table 7.

3. For each infant create an infant model score for the metal level in which that infant is enrolled (corresponding to scores in Part IV) using directions starting at row 162 of Table 8, infant variables created in Tables 5 and 8, and factors from Table 9.
 a. Unadjusted infant risk score is the sum of (0/1 variable x factor) over all of the following:
 i. 0/1 age-sex categories for INFANT models
ii. 0/1 maturity x severity level interactions for INFANT models

b. The unadjusted score is the sum of the factors of the corresponding metal level in Table 9 for all variables set to 1 for that infant.
 i. SCORE_INFANT_PLATINUM uses factors from column D
 ii. SCORE_INFANT_GOLD uses factors from column E
 iii. SCORE_INFANT_SILVER uses factors from column F
 iv. SCORE_INFANT_BRONZE uses factors from column G
 v. SCORE_INFANT_CATASTROPHIC uses factors from column H

c. Females will have a single maturity level x severity level interaction set to 1 and that factor will be their score. Males will have a single maturity level x severity level interaction set to 1 and a single age-sex variable set to 1; the sum of the factors for those two variables will be their score.

d. Identify the metal level in which the infant is enrolled (Table 1).

e. Create an infant model score SCORE_INFANT for the metal level in which the infant is enrolled using directions in rows 189-190 in Table 8.

Step 5: CSR-adjusted score calculation (using instructions in Tables 6-8).

1. For each adult, create an adult model CSR-adjusted score for the metal level in which that adult is enrolled (corresponding to CSR-adjusted scores in Part IV).
 a. Each adult will have one of the following CSR-adjusted risk scores that corresponds to his/her metal level. CSR-adjusted scores are created using directions in rows 113-132 in Table 6.
 i. CSR_ADJUSTED_SCORE_ADULT_PLATINUM
 ii. CSR_ADJUSTED_SCORE_ADULT_GOLD
 iii. CSR_ADJUSTED_SCORE_ADULT_SILVER
 iv. CSR_ADJUSTED_SCORE_ADULT_BRONZE
 v. CSR_ADJUSTED_SCORE_ADULT_CATASTROPHIC
 b. Identify the metal level in which the adult is enrolled (Table 1).
 c. Create an adult model score CSR_ADJUSTED_SCORE_ADULT for the metal level in which the adult is enrolled using directions in rows 137-139 in Table 6.

2. For each child, create a child model CSR-adjusted score for the metal level in which that child is enrolled (corresponding to CSR-adjusted scores in Part IV).
 a. Each child will have one of the following CSR-adjusted risk scores that corresponds to his/her metal level. CSR-adjusted scores are created using directions in rows 69-88 in Table 7.
 i. CSR_ADJUSTED_SCORE_CHILD_PLATINUM
 ii. CSR_ADJUSTED_SCORE_CHILD_GOLD
 iii. CSR_ADJUSTED_SCORE_CHILD_SILVER
 iv. CSR_ADJUSTED_SCORE_CHILD_BRONZE
 v. CSR_ADJUSTED_SCORE_CHILD_CATASTROPHIC
 b. Identify the metal level in which the child is enrolled (Table 1).
 c. Create a child model score CSR_ADJUSTED_SCORE_CHILD for the metal level in which the child is enrolled using directions in rows 93-95 in Table 7.
3. For each infant, create an infant model CSR-adjusted score for the metal level in which that infant is enrolled (corresponding to CSR-adjusted scores in Part IV).
 a. Each infant will have one of the following CSR-adjusted risk scores that corresponds to his/her metal level. CSR-adjusted scores are created using directions in rows 168-187 in Table 8.
 i. CSR_ADJUSTED_SCORE_INFANT_PLATINUM
 ii. CSR_ADJUSTED_SCORE_INFANT_GOLD
 iii. CSR_ADJUSTED_SCORE_INFANT_SILVER
 iv. CSR_ADJUSTED_SCORE_INFANT_BRONZE
 v. CSR_ADJUSTED_SCORE_INFANT_CATASTROPHIC
 b. Identify the metal level in which the infant is enrolled (Table 1).
 c. Create an infant model score CSR_ADJUSTED_SCORE_INFANT for the metal level in which the infant is enrolled using directions in rows 192-194 in Table 8.

End of Document