Systematic Review of ECG-based Signal Analysis Technologies for Evaluating Patients With Acute Coronary Syndrome

Prepared for:
Agency for Healthcare Research and Quality
540 Gaither Road
Rockville, Maryland 20850

October 2011
Systematic Review of ECG-based Signal Analysis Technologies for Evaluating Patients With Acute Coronary Syndrome

Technology Assessment Report

Project ID: CRDD0311

October 2011

Duke Evidence-based Practice Center

Remy R. Coeytaux, M.D., Ph.D.
Philip J. Leisy, B.S.
Galen S. Wagner, M.D.
Amanda J. McBroom, Ph.D.
Cynthia L. Green, Ph.D.
Liz Wing, M.A.
R. Julian Irvine, M.C.M.
Gillian D. Sanders, Ph.D.
This draft technology assessment is distributed solely for the purpose of peer review and/or discussion at the MedCAC meeting. It has not been otherwise disseminated by AHRQ. It does not represent and should not be construed to represent an AHRQ determination or policy.

This report is based on research conducted by the Duke Evidence-based Practice Center under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA 290-2007-10066 I). The findings and conclusions in this document are those of the authors, who are responsible for its contents. The findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of the Agency for Healthcare Research and Quality or of the U.S. Department of Health and Human Services.

None of the investigators has any affiliations or financial involvement related to the material presented in this report.
Peer Reviewers

[To be provided in the final report.]

Acknowledgements

The authors thank Connie Schardt, M.L.S., and Megan von Isenburg, M.S.L.S., for help with the literature search and retrieval.
Contents

Executive Summary .. 1
Introduction .. 9
 - Epidemiology of Coronary Artery Disease (CAD) .. 9
 - CAD Versus Ischemia Versus Infarction ... 9
 - Acute Coronary Syndrome (ACS) ... 10
 - Diagnostic Testing and Risk Stratification for CAD ... 11
 - Role and Limitations of ECG in the Diagnostic Workup of CAD and ACS 12
 - Evaluating Emerging ECG-based Technologies ... 12
 - Objectives of This Report ... 13
Methods ... 14
 - Key Questions ... 14
 - Analytic Framework ... 14
 - Approach .. 16
 - Sources of Information and Review Methods .. 16
 - Process for Study Selection .. 16
 - Literature Search Strategies ... 16
 - Inclusion and Exclusion Criteria ... 17
 - Data Abstraction ... 17
 - Peer Review Process ... 18
Results ... 19
 - Analysis for KQ 1 .. 20
 - KQ 1a—Devices and Methods for ECG-based Signal Analysis ... 20
 - KQ 1b—Gold Standard Tests .. 22
 - Summary for KQ 1 .. 25
 - Analysis for KQ 2 .. 26
 - KQ 2a—Evidence for Variability by Rater, Patient, or Device ... 26
 - KQ 2b—Evidence for Test Performance .. 27
 - KQ 2c—Evidence for Impact on Diagnostic Decisionmaking .. 39
 - KQ 2d—Evidence for Impact on Patient Outcomes .. 39
 - Summary for KQ 2 .. 39
Discussion .. 41
 - Summary of Findings .. 41
 - Applicability of Current Studies ... 42
 - Strengths and Limitations of This Review .. 42
 - Future Research .. 42
Summary .. 45
References .. 46
Abbreviations and Acronyms .. 50
Appendix A: Gray Literature Search Strategy ... 51
Appendix B: Search Terms ... 54
Appendix C: Inclusion and Exclusion Criteria ... 57
Appendix D: Quality Assessment Criteria and Ratings ... 59
Appendix E: Excluded Studies .. 63

DRAFT – Not for citation or dissemination
Figures
Figure 1. Decision threshold conceptual model ... 11
Figure 2. Analytic framework .. 15
Figure 3. Literature flow diagram for Key Question 2 ... 19

Tables
Table 1. ECG-based signal analysis devices identified by the gray literature search 20
Table 2. Potential reference standards for diagnosing CAD or ACS 26
Table 3. Performance characteristics of PRIME ECG and LP 3000 devices 28
Table 4. PRIME ECG performance characteristics .. 37
Table 5. 12-lead ECG performance characteristics .. 38
Executive Summary

Introduction

Coronary artery disease (CAD) is one of the leading causes of mortality in the U.S.\(^1\) One of the most common manifestations of clinically significant CAD is chest pain resulting from cardiac ischemia or myocardial infarction (MI).\(^2\) While chest pain is a common symptom of patients presenting to clinics and emergency departments, a relatively small proportion of patients presenting to the emergency department with acute chest pain are ultimately diagnosed with MI. Identification of which patients with chest pain are experiencing acute ischemic heart disease is critical since a delay in diagnosis can impede the application of effective therapies, such as thrombolytic agents or primary percutaneous coronary intervention (PCI).

Patients who present for medical attention with chest pain or other symptoms that suggest acute ischemia or infarction are often considered to have acute coronary syndrome (ACS). ACS typically serves as a “working diagnosis” for patients suspected of having ischemic heart disease, pending the establishment or ruling out of specific diagnoses.\(^2\) The first and potentially most important test typically administered in the workup of a patient with symptoms suggestive of ACS is the standard, resting 12-lead electrocardiogram (ECG). Typically, the ECG will indicate ST elevation myocardial infarction (STEMI), or it will be normal or nondiagnostic. If the ECG indicates STEMI, the patient will most likely be taken directly to coronary angiography, and clinical decisionmaking and subsequent patient outcomes would not be expected to improve with further testing. A normal or nondiagnostic ECG result does not rule out the possibility of acute ischemia or infarction, so further testing is usually indicated if the clinical presentation suggests ischemic heart disease. Patients without ST elevation on the initial ECG who are ultimately found via further testing (e.g., elevated cardiac biomarkers, stress testing, or other tests) to have undergone an MI are diagnosed as having had non-ST elevation myocardial infarction (NSTEMI). Patients without ST elevation on the initial ECG who subsequently show evidence (e.g., by stress testing) of reversible myocardial ischemia are usually ascribed the diagnosis of unstable angina. Pending the results of further testing, patients without ST elevation whose clinical presentation suggests a cardiac etiology are typically considered to have ACS.

Although the standard ECG is critically important in the initial evaluation of patients with ACS, it is limited in its ability to correctly identify all patients with acute ischemic heart disease. False-positive test results are likely to lead to further testing or initiation of treatment, or both, whereas false-negative test results may lead to adverse outcomes associated with delay or withholding of potentially life-saving interventions. New devices that seek to improve on the standard ECG’s capabilities in the evaluation of patients presenting with chest pain have been proposed. An enhanced ECG-based test that allows a patient with ACS to be accurately identified could potentially limit the myocardial damage associated with delays in administering acute reperfusion treatment (by improving on the standard ECG’s true-positive rate), while possibly minimizing the use of potentially harmful invasive testing among patients who do not have clinically significant CAD (by improving on the standard ECG’s false-positive rate). The comparative technical efficacy and diagnostic accuracy efficacy of these technologies as well as their impact on clinical decisionmaking and patient outcomes, however, is uncertain.

The Coverage and Analysis Group at the Centers for Medicare and Medicaid Services (CMS) requested this report from the Technology Assessment Program (TAP) at the Agency for...
Healthcare Research and Quality (AHRQ). AHRQ assigned this report to the Duke Evidence-based Practice Center (Contract No. HHSA 290-2007-10066 I). The purpose of this technology assessment is to summarize the clinical and scientific evidence for commercially available ECG-based signal analysis technologies used to evaluate patients with chest pain or other symptoms suggestive of ACS among patients at low to intermediate risk for CAD. Although some ECG-based technologies have been used for other purposes (e.g., detecting malignant arrhythmias), these are not the focus of the current report—as defined in our inclusion/exclusion criteria. Rather, this report focuses on patients who do not meet STEMI or STEMI-equivalent criteria on the standard 12-lead ECG.

We synthesized the existing literature on these technologies in response to the following key questions (KQs):

KQ 1:

a. What devices and methods for ECG-based signal analysis are used, or are proposed to be used, for diagnosis of CAD and/or acute coronary syndrome (with or without chest pain) in outpatient settings (including physician offices, urgent care, and emergency departments) in patients at low to intermediate risk? What is the U.S. Food and Drug Administration (FDA) status of these devices?

b. What are considered the “gold standard” tests for the diagnosis of CAD and/or acute coronary syndrome (with or without chest pain) in patients at low to intermediate risk, and what are their strengths and limitations?

KQ 2:

a. What is the evidence for inter-rater, intra-rater, intra-patient, and intra-device variability?

b. What is the evidence for diagnostic test performance compared to the reference standard used in the study? What factors (confounders) affect test sensitivity and specificity?

c. What is the evidence that ECG-based signal analysis technologies impact diagnostic decisionmaking?

d. What is the evidence that ECG-based signal analysis technologies impact patient outcomes?

Methods

We developed an analytic model based on principles from Fryback and Thornbury’s hierarchical model of diagnostic efficacy, which guided our research questions, search strategy, data abstraction elements, and evaluations. We conducted a systematic search of the English-language literature indexed in PubMed® as well as the U.S. FDA Web site, Google™, and online patents. We sought to identify devices that improved the diagnosis of CAD and/or ACS through the use of signal analysis, spectral analysis, or other forms of advanced data transformation.

The purpose of the literature review for KQ 1 was to identify potentially relevant devices and methods, while the purpose of the literature review for KQ 2 was to synthesize the available scientific evidence pertaining to ECG-based signal analysis technologies that is potentially applicable to the diagnosis of CAD and/or ACS. The general eligibility criteria for our review included:
• A relevant device must be a physical device (i.e., not simply computer software) that obtains and interprets information about the heart’s electrical activity in ways that are different from the standard 12-lead ECG.
• The device must have been approved or cleared for marketing by the U.S. FDA.
• The device must be commercially available in the U.S.
• Implementation of the device in most medical facilities must be feasible.
• The device must be tested in patients at low to intermediate risk for CAD who have a clinical presentation consistent with ACS.
• The study must report relevant outcomes including performance characteristics, effects on diagnostic or treatment decisions, or effects on patient outcomes.

We excluded studies that reported data only from patients known to have ST elevation by standard ECG, or studies that did not report data separately for patients with and without ST elevation at the time of the initial ECG. We also excluded studies that included a previously scheduled coronary angiogram as an eligibility criterion for patients; the rationale for this exclusion was that a patient population preselected for coronary angiography is likely to include a relatively high proportion of individuals at high risk for CAD and ischemic heart disease—and as such does not represent the target population for this report.

To aid in standardization of data collection, investigators received data abstraction instructions directly on each form created specifically for this project with the DistillerSR data synthesis software program (Evidence Partners Inc., Manotick, ON, Canada). We designed these forms to collect the data required to evaluate the specified eligibility criteria for inclusion in this review. One investigator abstracted data from each included study and assessed study quality and applicability; the results were then overread for accuracy by a second investigator. Data were synthesized qualitatively and, when appropriate, using quantitative methods. We excluded from formal analysis those devices for which we could not find evidence of commercial availability.

Results

Key Question 1a—Devices and Methods for ECG-based Signal Analysis

The combined gray and published literature searches identified 11 potentially relevant devices that are available for purchase in the U.S., including 4 that use signal averaging, 1 that uses body surface mapping, 2 that use mathematical analysis, 2 that use high-frequency QRS analysis, and 2 that use vectorcardiography. Of the 11 devices, 8 have been cleared for marketing by the FDA: Predictor® and Model 1200 EPX™ by Arrhythmia Research Technology; MAC® 5000 by GE Medical; LP 3000 by Fidelity Medical; the PRIME ECG® by Heartscape Technologies; 3DMP™/MCG™/mfEMT™ by Premier Heart; CardioSoft® by NASA; and HyperQ™ by Biological Signal Processing.
Key Question 1b—Gold Standard Tests

Coronary Artery Disease

Current guidelines from the American College of Cardiology/American Heart Association (ACC/AHA) maintain that coronary angiography remains the best reference standard for diagnosing CAD. Through interrogation and identification of the coronary anatomy, coronary angiography is the best available test to identify which patients may benefit from surgical intervention, medical management, or both. Among low-risk patients who are typically not referred for coronary angiography but who undergo clinical observation and/or noninvasive testing instead, several noninvasive diagnostic tests have served as an acceptable reference standard. In these patients, results from noninvasive tests have correlated with the incidence of cardiovascular events. In particular, stress tests (with or without imaging) provide clinicians with incremental risk prediction that informs management and treatment decisions. Stress tests also provide prognostically important data that have been associated with patient outcomes, such as exercise capacity, hemodynamic response, and magnitude of ST segment abnormalities.

According to the ACC/AHA consensus guidelines, the standard, resting 12-lead ECG is not an acceptable reference standard for the diagnosis of CAD. The standard ECG detects electrocardiographic signals emitted by myocardial cells, but it cannot directly detect the presence of atherosclerotic plaques in the coronary arteries. Consequently, the standard ECG demonstrates poor accuracy in diagnosing patients at low to intermediate risk for CAD. New technologies for diagnosing CAD are therefore most appropriately compared to the reference standard of coronary angiography or, at the very least, acceptable noninvasive reference standards such as stress imaging. Appropriate use of biomarkers is an acceptable reference standard for the diagnosis of acute MI but not of CAD. Table ES-1 summarizes how current guidelines maintain that coronary angiography remains the preferred reference standard for the diagnosis of CAD, while exercise stress testing with imaging serves as an acceptable reference standard.

Table ES-1. Potential reference standards for diagnosis of CAD

<table>
<thead>
<tr>
<th>Reference Standard</th>
<th>Level of Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary angiography</td>
<td>Preferred</td>
</tr>
<tr>
<td>Stress testing with imaging</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Imaging studies without exercise or pharmacological stress</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Resting 12-lead ECG</td>
<td></td>
</tr>
<tr>
<td>Stress testing with ECG</td>
<td></td>
</tr>
<tr>
<td>Biomarkers (applicable only for identifying myocardial injury)</td>
<td>Incomplete</td>
</tr>
</tbody>
</table>

Based on current guidelines.

Abbreviations: CAD = coronary artery disease; ECG = electrocardiogram
Acute Coronary Syndrome

ACS is a term commonly used to describe the clinical presentation that includes acute onset of chest pain or other symptoms that suggest myocardial ischemia or infarction. ACS typically serves as a working diagnosis for such patients, pending the establishment or ruling out of specific diagnoses. As such, there is no gold standard test for ACS. The standard ECG serves as one of the most important tests in the initial evaluation of patients who present with symptoms suggestive of ACS, but additional clinical and laboratory information is required to accurately differentiate patients with and without acute ischemic heart disease.

Key Question 2a—Evidence for Variability by Rater, Patient, or Device

Our search strategy did not identify any eligible studies that reported information about intra-rater, intra-patient, or intra-device variability. We identified a single study that evaluated the inter-rater variability of the PRIME ECG body surface mapping (BSM) device. This study involved 150 eligible patients with acute chest pain who underwent both standard ECG and PRIME ECG testing in an emergency department setting. Complete data were available for 135 patients. Emergency physicians and BSM experts interpreted the BSM readings as either negative or positive. Of these 135 readings, emergency physicians and BSM experts agreed on 52 (39%) of the negative test result readings and 63 (47%) of the positive test result readings. Fifteen (11%) BSM tests were interpreted as negative by emergency physicians but positive by BSM experts, and 5 (4%) BSM tests were interpreted as positive by emergency physicians but negative by BSM experts. This corresponds to a kappa statistic of 0.63 (95% confidence interval [CI], 0.53 to 0.72).

Key Question 2b—Evidence for Test Performance

We identified 11 studies represented by 14 articles that evaluated the test performance of 2 eligible devices. The PRIME ECG was evaluated in 10 studies involving patients with chest pain recruited from emergency departments, medical wards, or mobile coronary care units; 8 of these studies also evaluated the 12-lead ECG. Some of the patients were treated in mobile coronary care units in Ireland, and as such may have been at high risk for CAD, thereby resulting in a study population that may be at higher overall risk for CAD than the target population for this report. The PRIME ECG was compared to cardiac biomarkers for the presence of acute myocardial injury. A bivariate random-effects model was used to combine results of nine of these studies after excluding one study that was a subset of other studies and as such had duplicate data.

The sensitivity and specificity were 71.1 percent (95% CI, 45.6 to 87.8) and 90.2 percent (95% CI, 83.2 to 94.4), respectively. Studies were statistically heterogeneous for the positive likelihood ratio (LR+) (Q = 122.9, df = 9, p < 0.001) and the negative likelihood ratio (LR-) (Q = 315.0, df = 9, p < 0.001; I² = 97.1%). We performed a sensitivity analysis excluding two studies, namely, the initial study that most clearly used a different diagnostic algorithm and a second study with a very small sample size that was disproportionately weighted in the random effects meta-analysis. The sensitivity and specificity for the remaining studies were 68.4 percent (95% CI, 35.1 to 89.7) and 91.4 percent (95% CI, 83.6 to 95.7), respectively. The remaining studies were heterogeneous for the LR+ (Q = 277.4, df = 7, p < 0.001, I² = 97.5%) and LR- (Q = 277.4, df = 7, p < 0.001, I² = 97.5%). Using these latter estimates of test performance, an abnormal
PRIME ECG test in a patient with a pretest probability for clinically significant CAD of 50 percent, would yield a posttest probability of 53 percent. A normal PRIME ECG would yield a posttest probability of 2.5 percent. The performance characteristics of the 12-lead ECG were neither clinically nor statistically significantly different from the PRIME ECG.

One other eligible device in addition to the PRIME ECG was evaluated in a study included in this report. The LP 3000 signal averaging system was compared to a 12-lead ECG in 126 consecutive patients referred to a hospital for a first episode of typical angina. The LP 3000 system was found to have a sensitivity and specificity of 70 percent and 89 percent, respectively, compared with 56 percent and 89 percent for ST changes detected by 12-lead ECG. The improved sensitivity of signal averaging ECG relative to 12-lead ECG was statistically significant (p < 0.01).

Key Question 2c—Evidence for Impact on Diagnostic Decisionmaking

Our search did not identify any eligible studies pertinent to KQ 2c.

Key Question 2d—Evidence for Impact on Patient Outcomes

We identified a single study that addressed this question among a population of patients at moderate to high risk for CAD. The multicenter, prospective, cohort-blinded Optimal Cardiovascular Diagnostic Evaluation Enabling Faster Treatment of Myocardial Infarction (OCCULT MI) trial evaluated the PRIME ECG among 1830 adults at moderate to high risk for adverse cardiovascular outcomes who presented to a tertiary care emergency department with chest pain or symptoms suspicious for ACS. The primary aim of this study was to test the hypothesis that individuals with STEMI detected only by the PRIME ECG would have similar angiographic pathology and similar mortality and morbidity rates to those with STEMI detected by standard ECG. A preplanned secondary analysis compared outcomes of patients with STEMI with patients without STEMI. Among the 1514 patients with available outcome data, ST elevation detected by the PRIME ECG was associated with increased mortality (odds ratio [OR] 11.2; 95% CI, 1.8 to 67). ST elevation on a standard 12-lead ECG, however, was not predictive of adverse outcomes in this population.

Another study followed patients who initially presented with symptoms suggestive of ACS, both through their hospital course of treatment and after discharge from the hospital. Discharge diagnoses of either MI or ACS were recorded, as were followup events defined as a repeated visit to the emergency department with chest pain or ischemic symptoms, recurrent MI, catheterization, revascularization, or death. Rates of MI or ACS diagnoses or followup events were not reported, but the authors considered these patient outcomes in two of three separate criterion standards to calculate the sensitivities and specificities of both standard ECGs and PRIME ECG.
Discussion

Currently, a paucity of evidence exists about the utility of ECG-based signal analysis technologies as a diagnostic test among patients at low to intermediate risk for CAD who present in the outpatient setting with the chief complaint of chest pain or other symptoms suggestive of ACS. Most devices identified by our gray literature search did not appear to have published articles describing their performance among the target population for this report. The literature was not sufficient to determine if factors such as sex, body habitus, medications, and comorbid medical conditions affected test performance.

The limited available evidence demonstrates proof of concept, particularly for the PRIME ECG device, and it suggests that the sensitivity of BSM and signal averaging devices is higher compared with standard ECG for identifying patients with ACS who have either ischemic heart disease or CAD. However, this evidence is limited by the use of incomplete reference standards in the published studies, including elevated biomarkers for detecting acute ischemic heart disease.

Further research is needed to better describe the performance characteristics of these devices to determine in what circumstances, if any, these devices might precede, replace, or add to the standard ECG in test strategies to identify patients with clinically significant CAD in the patient population of interest. To fully assess the impact of these devices on the diagnostic strategies for patients with chest pain, test performance needs to be linked to clinically important outcomes through modeling or longitudinal studies.

References

6. American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. A report of the American College of Cardiology Foundation Quality Strategic Directions Committee

Introduction

Epidemiology of Coronary Artery Disease (CAD)

Cardiovascular disease remains the leading cause of mortality in the United States. An estimated one in three adults has one or more types of cardiovascular diseases, including hypertension, coronary artery disease (CAD), heart failure, stroke, and congenital defects.1 Approximately 13 million individuals in the U.S. have CAD. Of these, approximately 7 million have angina pectoris (chest pain) and have had a myocardial infarction (MI).1 While chest pain is a common symptom of patients presenting to clinics and emergency wards, only about 6 percent of patients presenting to the emergency room with acute chest pain are ultimately diagnosed with MI.2 Identification of which patients with chest pain are experiencing myocardial ischemia or infarction is critical since a delay in diagnosis can impede the application of effective therapies, such as thrombolytic agents or primary percutaneous coronary intervention (PCI). Tests that identify patients with significant CAD serve as a means of facilitating aggressive implementation of secondary preventive strategies. In a large national sample, only 37.6 percent of patients without known CAD referred for elective coronary angiography—most of whom had undergone prior noninvasive testing—were found to have obstructive CAD.3 Thus, accurate, noninvasive diagnostic tests and protocols are important in order to properly triage patients presenting with chest pain. Currently available tests identify a relatively low proportion of patients who will benefit from secondary prevention.

CAD Versus Ischemia Versus Infarction

A diagnosis of CAD results from findings suggestive of atherosclerotic plaque in the coronary arteries. This plaque may or may not create an obstruction to coronary blood flow. The build-up of atherosclerotic plaque is a progressive and diffuse process that develops in the coronary arteries. Plaque formation may begin prior to middle age and may be asymptomatic, as evidenced from previous autopsy studies of young soldiers and young victims of motor vehicle accidents. CAD is believed to have a polygenetic basis, influenced by an individual’s genes as well as their susceptibility to environmental influences (such as diet and exercise). The progression and severity of CAD is associated with advancing age such that older individuals have a higher likelihood of CAD, even without the presence of other risk factors.

Patients with CAD may or may not present objective evidence of myocardial ischemia, defined as a mismatch between coronary blood flow and myocardial oxygen demand. Traditional observations have indicated that myocardial ischemic imbalance may begin to occur when the luminal narrowing of the coronary artery exceeds 70 percent. In a clinical setting, ischemia may trigger an episode of angina pectoris or other equivalent symptoms of reduced oxygen delivery to the myocardium (e.g., shortness of breath, epigastric discomfort, jaw or arm pain/heaviness). Stress tests, whether solely electrocardiographic or combined with imaging modalities, are
designed to qualitatively or quantitatively identify decreased regional myocardial blood flow in the distribution of the corresponding coronary artery. Patients who exhibit ischemia on stress testing and whose symptoms are not optimally managed with medical therapy are often referred for diagnostic coronary angiography and then elective revascularization if indicated. Prolonged ischemia may result in MI, although infarction can also develop in nonobstructive coronary vessels as a consequence of a spontaneous atheromatous plaque rupture. The hallmark of infarction is elevation of cardiac muscle biomarker serum levels, including cardiac troponin and the creatine kinase MB isoenzyme. Elevation of cardiac troponin serves as evidence of myocardial cell death. Compared with patients without a prior MI, patients with a history of MI are at higher risk for future cardiac events, including recurrent infarction and death.

Acute Coronary Syndrome (ACS)

Acute coronary syndrome (ACS) is a term commonly used to describe the clinical presentation that includes acute onset of chest pain or other symptoms that suggest myocardial ischemia or infarction. ACS typically serves as a “working diagnosis” for patients suspected of having ischemic heart disease, pending the establishment or ruling out of specific diagnoses. ²

The first, and potentially most important, test typically administered in the workup of a patient with symptoms suggestive of ACS is the standard, resting 12-lead ECG. Typically, the ECG will indicate ST elevation myocardial infarction (STEMI) or be normal or nondiagnostic. If the ECG indicates STEMI, the patient will most likely be taken directly to coronary angiography, and patient outcomes would not be expected to improve with further testing. A normal or nondiagnostic ECG result does not rule out the possibility of acute ischemia or infarction, so further testing is usually indicated. Patients without ST elevation on the initial ECG who are ultimately found via further testing (e.g., elevated cardiac biomarkers, stress testing) to have undergone MI are diagnosed as having had non-ST elevation myocardial infarction (NSTEMI). Patients without ST elevation on the initial ECG who subsequently show evidence (e.g., by stress testing) of reversible myocardial ischemia are usually ascribed the diagnosis of unstable angina. Patients with the clinical presentation of acute-onset chest pain or other symptoms suggesting a cardiac etiology without ST elevation on initial ECG may continue to be considered to have ACS, pending the results of further testing.

Patients who present with symptoms suggestive of ACS and who have a nondiagnostic or normal resting ECG fall into one of two categories: (1) they are experiencing myocardial ischemia or infarction (the ECG was falsely negative) or (2) their symptoms are not caused by acute ischemic heart disease. Patients with a false-negative ECG represent the population for which improvement on diagnostic performance of the resting ECG is likely to have the greatest potential for benefit. These patients are at high risk for not receiving potentially life-saving and highly time-sensitive treatments. Patients with a false-positive ECG may also potentially benefit from a more accurate, noninvasive test than the resting ECG by avoiding the need for subsequent invasive testing or possibly harmful treatment. The potential harms associated with undiagnosed and untreated ischemic heart disease, however, are generally considered greater than the potential harms associated with further workup and treatment of patients with false-positive ECGs.
Diagnostic Testing and Risk Stratification for CAD

CAD is an important risk factor for the development of ischemic heart disease. It follows, therefore, that risk stratification for the presence of CAD may help improve both the accuracy of diagnosis and the timely treatment of ischemic heart disease among patients with ACS. Figure 1 illustrates the relationship between risk stratification and clinical decisionmaking for patients without known CAD who present with chest pain or other symptoms for which CAD-related myocardial ischemia is a possible etiology. Tests designed to diagnose CAD may not be indicated in patients who are deemed to be at very low risk, such as in the case of a healthy 22-year-old woman with atypical chest pain and no known risk factors for CAD. Similarly, a 73-year-old man with diabetes, hypertension, and a long history of tobacco use who presents with exertional substernal chest pain is likely to be treated initially for presumptive myocardial ischemia without confirmatory testing for CAD. In neither scenario would diagnostic testing be expected to move a patient across decisionmaking thresholds (indicated by the letters A and B in Figure 1).

Figure 1. Decision threshold conceptual model

![Decision threshold conceptual model](image)

Likelihood of CAD

0% 100%

Abbreviation: CAD = coronary artery disease

Noninvasive diagnostic testing may, however, be particularly informative for the large population of patients who are best categorized as having a low to intermediate risk for CAD, yet who present with chest pain or other symptoms suggestive of ACS. For this category of patients, represented by the A–B segment in Figure 1, noninvasive test results have proven useful for posttest decisionmaking. Within this framework of pretest risk prediction, decisions regarding which diagnostic test to use—or the decision not to perform a test at all—must be made.

Recently published guidelines propose three diagnostic classifications of patients who present with symptoms suggestive of ACS, based on findings from an initial resting ECG: (1) STEMI (including patients with presumed new left bundle branch block), (2) unstable angina or NSTEMI, and (3) nondiagnostic ECG. For the purpose of this report, we considered patients with STEMI or STEMI-equivalent (defined as ST depression occurring in precordial leads V1–V4, indicating ST elevation on the left ventricular posterior wall opposite to the interventricular...
septum) to be at high risk for both CAD and ischemic heart disease. The target population for the purpose of this report excludes these high-risk patients and focuses, rather, on patients with symptoms suggestive of ACS at low to intermediate risk for ischemic heart disease, including patients with a clinical presentation and initial ECG findings consistent with unstable angina or NSTEMI as well as patients with a nondiagnostic resting ECG at time of presentation.

Role and Limitations of ECG in the Diagnostic Workup of CAD and ACS

In patients where CAD or ACS is suspected—either because of the presence of risk factors for CAD or because of symptoms that may represent manifestations of CAD (e.g., chest pain)—the standard ECG is one of the most commonly performed tests. By providing a “snapshot” of the heart’s electrocardiographic activity, the ECG allows the reading physician to assess the signs suggestive of acute ischemia, hypertrophy, arrhythmia, history of MI, or the risk of inherited cardiomyopathies such as long-QT syndrome or Wolff-Parkinson-White syndrome. The ECG is nearly universally available and is noninvasive, easy to perform, relatively inexpensive, and expedient (an ECG can usually be performed in less than 5 minutes). Also, most ECG machines are equipped with computerized diagnostic algorithms that provide an immediate preliminary interpretation, which is made available for physician overread.

However, the standard ECG has several significant limitations. First, an ECG represents electrocardiographic activity at a single moment in time while the patient is at rest. As such, ECGs often need to be repeated as a patient’s clinical condition changes. Second, although waveform-pattern recognition and comparison with expected normal findings are used in ECG assessment, the final analysis is open to subjective interpretation by the reading physician. Finally, a resting ECG’s diagnostic utility is severely limited in the diagnosis of CAD, with an estimated sensitivity between 12 and 70 percent depending on the population studied and criteria applied. Nevertheless, despite its limited utility in the diagnosis of CAD, the standard ECG is perhaps the single most useful test in the initial evaluation of a patient with ACS because it can rapidly identify patients who are likely to be experiencing acute myocardial ischemia.

Evaluating Emerging ECG-based Technologies

New devices that seek to improve ECG capabilities in the evaluation of patients with chest pain have been proposed—specifically, devices that are potentially capable of detecting myocardial ischemia or identifying patients who may have significant CAD, myocardial ischemia, or MI. An enhanced ECG-based test might demonstrate greater positive or negative predictive values, thereby limiting the harms associated with delays in treatment (as in the example of a posterior MI that was not evident on the 12-lead ECG), or by providing the diagnostic information necessary to avoid invasive diagnostic or therapeutic interventions.

Ideally, all new tests would be compared to the reference standard that most accurately discriminates between individuals with and without disease. Additionally, the relative advantages of a new test should be evaluated in comparison with existing technology. For example, in patients with low to intermediate risk for CAD who present with symptoms suggestive of ACS, an enhanced test might serve as a better initial diagnostic instrument than a standard ECG alone. Enhanced ECG technology could be used instead of, or in addition to, the standard 12-lead ECG.
Regardless of whether a new test is intended to complement or replace the standard ECG, the performance characteristics of both technologies should be evaluated relative to one or more appropriate reference standards.

Objectives of This Report

The Coverage and Analysis Group at the Centers for Medicare and Medicaid Services (CMS) requested this report from the Technology Assessment Program (TAP) at the Agency for Healthcare Research and Quality (AHRQ). AHRQ assigned this report to the Duke Evidence-based Practice Center (Contract No. HHSA 290-2007-10066I). The purpose of this technology assessment is to summarize the clinical and scientific evidence for commercially available ECG-based signal analysis technologies used to evaluate patients with chest pain at low to intermediate risk for CAD, or with a clinical presentation consistent with ACS. This report does not address the use of these technologies either to screen asymptomatic individuals for CAD or to evaluate patients at high risk for CAD—defined for the purpose of this report as generally meeting accepted criteria for STEMI.

We did a gray literature search to identify emerging technologies that noninvasively analyze electrical signals from the heart, which we have collectively termed “ECG-based signal analysis technologies.” One example of such a technology is the signal-averaged ECG, which analyzes the ECG by computing the average of numerous ECG complexes. Signal averaging increases the signal-to-noise ratio, allowing for the detection of small, microvolt signals. This technique is most often used in the detection of low amplitude signals at the terminal portion of the QRS complex (also known as ventricular late potentials). Late potentials may reflect inflammation, edema, fibrosis, or infarct.

Another example of ECG-based signal analysis technology is body surface mapping (BSM), also called body surface potential mapping, which uses up to 120 ECG electrodes to expand the measured area of electrocardiographic activity. Data collected by these electrodes are used to construct a three-dimensional representation of the thorax. A more recent form of ECG-based signal analysis uses mathematical modeling to derive clinical indices. These indices are then compared with an empirical database to generate differential diagnoses and a heart disease severity score. Some ECG-based signal analysis technologies have been used for purposes other than detecting CAD, but these uses are not the focus of the current report. For example, we specifically excluded the use of ECG-based signal analysis technologies for measuring heart rate variability or tests aimed at predicting malignant arrhythmias. This report focuses on commercially available ECG-based signal analysis devices to inform AHRQ and CMS about the utility of these emerging technologies for the diagnosis and management of individuals at low to intermediate risk for CAD who present with acute-onset chest pain or other symptoms suggestive of ACS.
Methods

Key Questions

The sponsor of this report identified two key questions (KQs) to be addressed. The EPC research team further clarified these questions and research objectives through consultation with the AHRQ Task Order Officer assigned to the project and representatives from CMS.

At the most general level, the objectives of this report were to (1) identify and describe devices and methods for ECG-based signal analysis that are currently being used, or are proposed to be used, for the diagnosis of CAD and/or ACS and (2) summarize the available clinical and scientific evidence on the use of ECG-based signal analysis technologies for the noninvasive diagnosis of suspected CAD and/or ACS in the ambulatory or emergency settings. These questions can be further broken down as follows:

KQ 1:

a. What devices and methods for ECG-based signal analysis are used, or are proposed to be used, for diagnosis of CAD and/or acute coronary syndrome (with or without chest pain) in outpatient settings (including physician offices, urgent care, and emergency departments) in patients at low to intermediate risk? What is the U.S. Food and Drug Administration (FDA) status of these devices?

b. What are considered the “gold standard” tests for the diagnosis of CAD and/or acute coronary syndrome (with or without chest pain) in patients at low to intermediate risk, and what are their strengths and limitations?

KQ 2:

a. What is the evidence for inter-rater, intra-rater, intra-patient, and intra-device variability?

b. What is the evidence for diagnostic test performance compared to the reference standard used in the study? What factors (confounders) affect test sensitivity and specificity?

c. What is the evidence that ECG-based signal analysis technologies impact diagnostic decisionmaking?

d. What is the evidence that ECG-based signal analysis technologies impact patient outcomes?

Analytic Framework

We developed an analytic framework based on principles from Fryback and Thornbury’s hierarchical model of diagnostic efficacy. This framework proposes a multilevel evaluation of diagnostic tests, beginning with studies of variability, progressing through diagnostic test performance, and ending with the effects on relevant patient outcomes. This analytic framework, shown in Figure 2, guided our research questions, search strategy, data abstraction elements, and evaluations.
Figure 2. Analytic framework

Patient Population: Patients at low to intermediate risk for CAD who present with chest pain or other symptoms suggestive of ACS.

Diagnostic Tests:
- KQ 1a: ECG-based signal analysis technologies
- KQ 2a: Other diagnostic tests

Outcomes:
- Technical accuracy efficacy:
 - Inter-rater variability
 - Intra-rater variability
 - Intra-patient variability
 - Intra-device variability
- Diagnostic accuracy efficacy:
 - Sensitivity
 - Specificity
 - Positive predictive value
 - Negative predictive value
- Diagnostic thinking efficacy
- Therapeutic efficacy
- Patient outcome efficacy

Abbreviations: ACS = acute coronary syndrome; CAD = coronary artery disease; ECG = electrocardiogram
Approach

Sources of Information and Review Methods

The sources of information as well as the review methods used by the EPC varied according to the KQ being addressed. Both KQs 1 and 2 required systematic literature search strategies, but the data extracted from the eligible studies were quite different. For KQ 1, we conducted a comprehensive review of the literature and gathered and collated information from the FDA, device manufacturers, and other relevant sources. KQ 1 also involved summarizing information about commonly used diagnostic tests, procedures, and strategies. The purpose of the literature search for KQ 2 was to synthesize the available scientific evidence pertaining to ECG-based signal analysis technologies that may potentially be applicable to the diagnosis of CAD in a patient without known CAD but who presents with chest pain or who has a clinical presentation suggestive of ACS.

Process for Study Selection

We conducted a systematic search of the English-language literature indexed in PubMed® and a search of the U.S. FDA Web site, Google™, other online journals, and online patents. We sought to identify devices that improved the diagnosis of CAD or ACS through the use of signal analysis, signal averaging, spectral analysis, or other forms of advanced data transformation. We specifically excluded devices that used imaging techniques such as echocardiography or coronary angiography as well as technologies that did not analyze electrocardiographic information. We initially included magnetocardiography in our published literature search strategy but later excluded this technology on the grounds that it involves more than the application of a single device and is not readily available at most medical facilities. We identified the major categories of electrocardiography, including body surface potential mapping, mathematical analysis of ECG signals, and vectorcardiography.

After discussions with representatives from CMS, we narrowed our focus to devices that (1) obtain and interpret information about the heart’s electrical activity, (2) interpret the electrical signal in a novel way using mathematical manipulation of data (e.g., fast Fourier transform or spatial imaging), and (3) interpret specifically for the purpose of diagnosing CAD or myocardial ischemia. We used the above-stated criteria to define ECG-based signal analysis devices for the purpose of this report.

We limited our search to named devices for which we could identify a manufacturer or distributor. We reviewed all of the studies identified that reported on any device or method that met our inclusion criteria. We excluded from formal analysis those devices for which we could not find evidence of commercial availability.

Literature Search Strategies

We devised two main strategies for gathering information. First, we conducted an extensive search of the gray literature on this subject. A single investigator searched each of the general gray literature sources listed in Appendix A including the ClinicalTrials.gov Web site (www.clinicaltrials.gov) in order to identify potentially relevant devices. Next, we searched PubMed through May 2011 using search terms for the specific devices identified in the gray literature search, terms for signal analysis or spectral analysis, and terms for CAD, myocardial
ischemia, and ACS. The exact search terms are detailed in Appendix B. The titles and abstracts of all citations retrieved through searches of PubMed were screened by two reviewers for potential inclusion. All citations that appeared to report primary data relevant to the study question were retrieved for full-text review.

Inclusion and Exclusion Criteria

Titles and abstracts were screened for eligibility by two investigators and selected for full-text review if either investigator deemed the study potentially eligible. Eligibility criteria were specific to each question and are detailed in Appendix C. General eligibility criteria included:

- A relevant device must be a physical device (i.e., not simply computer software) that obtains and interprets information about the heart’s electrical activity in ways that are different from the standard 12-lead ECG.
- The device must have been approved or cleared for marketing by the U.S. FDA.
- The device must be commercially available in the U.S.
- Implementation of the device in most medical facilities must be feasible.
- The device must be tested in patients at low to intermediate risk for CAD who have a clinical presentation consistent with ACS.
- The study must report relevant outcomes including performance characteristics, effects on diagnostic or treatment decisions, or effects on patient outcomes.

We excluded studies that reported data only from patients known to have ST elevation by standard ECG, or studies that did not report data separately for patients with and without ST elevation at the time of the initial ECG. We also excluded studies that included a previously scheduled coronary angiogram as an eligibility criterion for patients; the rationale for this exclusion criterion is that a patient population preselected for coronary angiography is likely to include a relatively high proportion of individuals at high risk for CAD and ischemic heart disease—and as such does not represent the target population for this report.

Data Abstraction

To aid in standardization of data collection, investigators received data abstraction instructions directly on each form created specifically for this project with the DistillerSR data synthesis software program (Evidence Partners Inc., Manotick, ON, Canada). We designed these forms to collect the data required to evaluate the specified eligibility criteria for inclusion in this review. For eligible studies, an investigator abstracted data and assigned quality ratings. Abstracted data included first author, year of publication, study design, patient selection criteria and patient characteristics, information about the study device, reference tests used, device and reference test performance characteristics, and quality assessment ratings. A second investigator overread abstracted data and independently assigned quality ratings. Disagreements were resolved by consensus. Quality ratings were based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool10-12 and included characteristics of sample selection, adequate description of the index and reference tests, blinded interpretation of the index and reference tests, and presence of verification bias (Appendix D). To indicate the summary judgment of the quality of the individual studies, we used the summary ratings of Good, Fair, and Poor based on the study’s adherence to well-accepted standard methodologies (such as QUADAS) and adequate reporting standards.
Device performance was summarized using sensitivity, specificity, and likelihood ratios. Test sensitivity describes the proportion of subjects with disease who have an abnormal test. Test specificity describes the proportion of subjects without disease who have a normal test. A likelihood ratio is a measure that may be more useful to clinicians since a simple nomogram allows posttest disease probabilities to be readily calculated. The positive likelihood ratio (LR+) describes how many times more likely it is that an abnormal test comes from a patient with disease versus a patient without disease. The negative likelihood ratio (LR-) describes how many times more likely it is that a normal test comes from a patient with disease versus a patient without disease.

When studies were conceptually homogeneous, we used random-effects bivariate meta-analysis to compute a summary estimate of performance. A random-effects model assumes that variability is a result of sampling errors as well as the true differences between studies and provides a meta-analytic modeling approach for pooling sensitivity and specificity, while accounting for possible correlation between sensitivities and specificities of the studies included. For studies that derived a test algorithm in a training set and tested performance in a validation set, we analyzed performance characteristics from the validation set. We evaluated statistical heterogeneity by inspecting forest plots and computing Q and I² statistics. Since the Q test is underpowered, we set the threshold for significant heterogeneity at p < 0.10. For the I² test, a suggested interpretation is to assign the terms low, moderate, and high to I² values of 25 percent, 50 percent, and 75 percent, respectively.

Peer Review Process

We employed internal and external quality-monitoring checks through every phase of the project to reduce bias, enhance consistency, and verify accuracy. Examples of internal monitoring procedures include three progressively stricter screening opportunities for each article (abstract screening, full-text screening, and data abstraction); involvement of at least two individuals (an abstractor and an overreader) in each data abstraction; and agreement of at least two investigators on all included studies.

Our principle external quality-monitoring device was the peer-review process. Nominations for peer reviewers were solicited from several sources, including clinical content experts from the EPC and AHRQ. The list of nominees was forwarded to AHRQ for vetting and approval.
Results

Figure 3 shows the flow of literature through the literature search and screening process for Key Question 2 (literature search not applicable to Key Question 1). Of the 1980 citations identified by our searches, 23 were duplicates. After applying inclusion/exclusion criteria at the title-and-abstract level, 288 full-text articles were retrieved and screened. Of these, 274 were excluded at the full-text screening stage, with 14 articles (representing 11 studies) remaining for data abstraction.

Figure 3. Literature flow diagram for Key Question 2

- 1,980 citations identified by literature search:
 - MEDLINE: 1892
 - Cochrane: 1
 - Embase: 74
- 23 duplicates
- 1,957 citations identified
- 288 passed abstract screening
- 14 articles representing 11 studies passed full-text screening
- 14 articles abstracted:
 - KQ 2a: 1
 - KQ 2b: 14
 - KQ 2c: 0
 - KQ 2d: 2
- 1669 abstracts excluded
- 274 articles excluded:
 - Non-English: 1
 - Not a full peer-reviewed publication: 7
 - Not original data: 49
 - Not a relevant device: 154
 - Not target population/address CAD, ischemia, or ACS: 58
 - Not relevant outcomes: 2
 - Age < 18: 1
 - N < 20: 2

Abbreviations: ACs = acute coronary syndrome; CAD = coronary artery disease; KQ = key question
Analysis for KQ 1

KQ 1a—Devices and Methods for ECG-based Signal Analysis

The gray literature search identified 10 potentially relevant devices. We subsequently identified one additional device (the LP 3000 system) through our search of the published literature. These 11 potentially relevant devices, all of which are available for purchase in the U.S., are listed in Table 1. A device may be cleared for marketing by the FDA when it is determined to be substantially similar to an established device. Of the devices listed in Table 1, 8 have been cleared for marketing by the FDA: Predictor® and Model 1200 EPX™ by Arrhythmia Research Technology; MAC® 5000 by GE Medical; LP 3000 by Fidelity Medical; the PRIME ECG® by Heartscape Technologies; 3DMP™/MCG™/mfEMT™ by Premier Heart; CardioSoft® by NASA; and HyperQ™ by Biological Signal Processing.

We identified several published articles that evaluated the test performance of the 3DMP and the Predictor; however, these studies are not included in this report because the devices were not administered to patients at low to intermediate risk being evaluated for ACS.

Table 1. ECG-based signal analysis devices identified by the gray literature search

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Manufacturer</th>
<th>FDA Cleared</th>
<th>Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictor</td>
<td>Corazonix (now Arrhythmia Research Technology)</td>
<td>Yes</td>
<td>SA</td>
</tr>
<tr>
<td>Model 1200 EPX</td>
<td>Arrhythmia Research Technology</td>
<td>Yes</td>
<td>SA</td>
</tr>
<tr>
<td>MAC 5000</td>
<td>GE Medical</td>
<td>Yes</td>
<td>SA</td>
</tr>
<tr>
<td>LP 3000</td>
<td>Fidelity Medical</td>
<td>Yes</td>
<td>SA</td>
</tr>
<tr>
<td>PRIME ECG</td>
<td>Heartscape</td>
<td>Yes</td>
<td>BSM</td>
</tr>
<tr>
<td>3DMP/MCG/mfEMT</td>
<td>Premier Heart</td>
<td>Yes</td>
<td>MA</td>
</tr>
<tr>
<td>CarDx</td>
<td>Bionetek</td>
<td>No</td>
<td>MA</td>
</tr>
<tr>
<td>CardioSoft</td>
<td>NASA</td>
<td>Yes</td>
<td>HF-QRS</td>
</tr>
<tr>
<td>HyperQ (stress ECG)</td>
<td>Biological Signal Processing</td>
<td>Yes</td>
<td>HF-QRS</td>
</tr>
<tr>
<td>Cardiologic Explorer</td>
<td>Enverdis®</td>
<td>No</td>
<td>VCG</td>
</tr>
<tr>
<td>Vascular Explorer</td>
<td>Enverdis</td>
<td>No</td>
<td>VCG</td>
</tr>
</tbody>
</table>

Abbreviations: BSM = body surface mapping; ECG = electrocardiogram; FDA = U.S. Food and Drug Administration; HF-QRS = high-frequency QRS; MA = mathematical analysis; SA = signal averaging; VCG = vectorcardiography
Body Surface Mapping Devices

Electrocardiographic BSM is an electrocardiographic technique that uses multiple electrocardiography leads (generally 80 or more) to detect cardiac electrical activity.16 An example of a commercially available BSM device is the PRIME ECG, which uses a disposable vest that incorporates additional electrodes to measure electrocardiac activity from the front, back, and sides of the torso to create an “80-lead ECG.” ECG recordings showing ST segment elevation, suggestive of acute myocardial injury, are represented on a torso map to localize and demonstrate the extent of injury. Areas on the torso map corresponding to regions of myocardium demonstrating ST segment elevation are color-coded red. Areas of ST depression are blue, and neutral areas are green. This colorimetric torso images are intended to help a health care provider rapidly scan the heart for significant abnormalities.

Mathematical Analysis and Signal Averaging Devices

A variety of devices have been developed that use mathematical modeling to derive clinical indices from electrocardiac activity detected by a standard ECG. For example, the 3DMP device utilizes ECG data from 2 of the 12 standard leads (leads II and V5) to perform frequency and time-domain analyses. Recordings for more than 82 seconds are amplified, digitized, encrypted, and sent securely over the Internet to Premier Heart Datacenter, where signal analysis and mathematical transformations are performed to derive indices that in particular patterns may signify the presence of disease. The data are compared to a large empirical database to determine a “final diagnosis” and “severity score”; these are then securely reported back over the Internet within several minutes to the requesting provider.

Another example of a device that uses mathematical analysis is the LP 3000 system, which records standard X, Y, and Z leads from a 12-lead ECG at 2 different time points. Signals are amplified, averaged, and filtered with a bidirectional filter at frequencies of 40 to 250 Hz. The filtered leads are then combined into a vector magnitude. The magnitude of the difference in filtered QRS duration—between a recording obtained when a patient is symptomatic and when a patient is asymptomatic—is used to identify patients who appear to demonstrate a significant alteration in QRS duration, and who are therefore at high risk for ischemic heart disease.17,18

High Frequency QRS Devices

The standard 12-lead ECG waveforms are typically measured in the frequency range up to 100 Hz. High frequency QRS (HF-QRS) electrocardiography uses a higher sampling rate, signal averaging, and filters to monitor frequencies from 150–250 Hz.19 Examples of HF-QRS devices are the CardioSoft and the HyperQ.

Vectorcardiography

Vectorcardiography typically uses four or five electrodes to measure the direction and magnitude of the electrical field vector of the heart. Vectorcardiography provides three-dimensional information on voltage and special orientation of the summation vector of the surface potential that does not require a qualitative evaluation by an expert and which allows spatial analysis of beat-to-beat variability.20 Examples of vectorcardiography devices are the Cardiologic Explorer and the Vascular Explorer.
KQ 1b—Gold Standard Tests

Tests for Diagnosing CAD

Diagnostic tests for CAD can be categorized as either invasive (e.g., coronary angiography via cardiac catheterization) or noninvasive. Noninvasive tests utilize technologies that permit either visualization of the heart and corresponding vasculature or interpretation of electrical signals generated by a beating heart. Coronary angiography can be used to infer the presence of CAD by identifying coronary artery occlusion, while noninvasive tests are used to infer the presence of CAD or ischemic heart disease by irregular electrical signals, abnormal heart wall motion, or damage to myocardial cells. Postmortem autopsy is the only procedure that can provide a definitive diagnosis of CAD, but coronary angiography is universally accepted as diagnostic of clinically significant CAD.

Our discussion emphasizes the options for reference standards that might be considered in research studies to evaluate a new technology to aid in the diagnosis and management of patients suspected of having clinically significant CAD and/or ischemic heart disease.

Invasive Testing

Coronary angiography. Invasive coronary angiography involves the insertion and manipulation of slender catheter tubes from a percutaneously accessed arterial site (most commonly via the femoral artery) to the origin of the coronary arteries. Iodinated contrast agents are injected through these tubes, lighting up the arterial structure, and allowing x-ray images to be obtained. These images are then used in determining a diagnosis of and/or treatment for CAD. The cineangiograms are the recorded real-time x-ray images of the epicardial coronary arteries. These images are subsequently reviewed by the physician to determine the optimal management strategy for the patient. Lesions that obstruct 70 percent or more of the coronary lumen significantly restrict coronary blood flow and may cause functional obstruction (e.g., angina or angina-like symptoms). The traditional cutpoint of 70 percent obstruction is often accepted as the threshold for significant CAD and may prompt revascularization. Nevertheless, data challenging qualitative angiographic grading for revascularization on patient outcomes have recently been reported.

Strengths and limitations of coronary angiography. The current role of coronary angiography has been to aid in the identification of patients who will benefit clinically from revascularization. Coronary angiography can be used in conjunction with contrast ventriculography to determine left ventricular function. According to consensus guidelines from the ACC/AHA, coronary angiography is the preferred reference standard for diagnosing the severity of obstruction in the coronary arteries since noninvasive testing currently lacks the sensitivity to exclude left main or multivessel CAD, which are independently associated with poor survival. Coronary angiography is generally considered to be the best available method of diagnosing CAD.

Coronary angiography is primarily restricted to identifying the degree of major epicardial vessel luminal stenosis. Furthermore, it cannot provide information regarding the patient’s exercise capacity, hemodynamic response to exercise, or functional status. Although coronary angiography is generally considered a relatively safe procedure, serious complications (including death, myocardial infarction, and embolization) have been reported. The rate of serious complication or death associated with coronary angiography is approximately 0.1 percent.
Finally, of all the frequently used tests for diagnosing CAD, coronary angiography is the most expensive.

Noninvasive Testing

Noninvasive tests are often used in the workup of undifferentiated chest pain in outpatient or acute-care settings to provide incremental data and refine the pretest clinical suspicion of CAD. Patients with negative (i.e., normal) findings on noninvasive tests may be triaged to prevention and clinical observation management strategies, whereas patients with positive findings may be referred for coronary angiography in order to confirm the presence or absence of CAD. Supported by the literature, this approach has been used to refine the selection of patients with the highest likelihood of significant CAD and for whom revascularization may improve clinical outcomes, while at the same time minimizing unnecessary referrals for more expensive and potentially risky invasive testing. Patients with indeterminate or conflicting results on initial noninvasive testing may be triaged to either strategy (prevention and clinical observation or CA) or referred for additional testing. This determination is largely dependent on the posttest risk assessment by the clinician.

ECG. The standard clinical ECG detects the electrical field generated by the ion currents in cardiac cells through detection of potential differences on the skin surface. The signal is amplified, filtered, and displayed as a recording, which is then interpreted either computationally or by medical personnel.

Strengths and limitations of ECG. ECG is inexpensive, universally available, and broadly understood across medical disciplines. However, ECG lacks sufficiently high sensitivity for detection of CAD to be considered an adequate reference standard.\(^7,8,30\)

Cardiac computed tomography (CCT). CCT uses modified software and hardware to acquire images of the luminal patency of the epicardial coronary arteries after administration of an intravenous contrast agent. Once obtained, the images are reformatted and reviewed for quantitative estimation of luminal narrowing in the coronary artery. If present, luminal narrowing is suggestive of CAD.\(^{31,32}\) Sensitivity is estimated to be 97 to 99 percent and specificity 88 to 93 percent for the diagnosis of CAD by 64-detector CCT.\(^33\)

Strengths and limitations of CCT. CCT provides noninvasive anatomical detail of both the heart and the coronary arteries. CCT can identify unrelated or unsuspected diseases, which may or may not be related to the patient’s symptoms (e.g., lung mass, pulmonary embolus, or aortic dissection). Operating characteristics (sensitivity/specificity) compare well with currently used stress imaging studies. However, CCT is relatively expensive. The procedure involves radiation exposure and the administration of an intravenous contrast (thus, CCT is not appropriate for patients with renal insufficiency). The procedure does not readily identify CAD in distal segments of the coronary arteries. CCT is a relatively new technology; as such, there is limited information about how it correlates with long-term clinical outcomes.

Biomarkers. Patients with acute MI demonstrate elevations of serum cardiac biomedical markers (biomarkers) such as troponin or creatinine kinase (CK-MB). These values are usually elevated within 6 to 8 hours after onset of MI. Elevation of biomarkers carries prognostic value after MI; testing for such elevation is, therefore, part of the standard procedure used to diagnose MI.

Strengths and limitations of biomarkers. Tests of biomarkers are widely available, and results are rapidly and safely obtainable. Interpretation of findings is relatively straightforward. When measured serially, the troponin and CK-MB biomarkers carry high sensitivity (89 to 95%)
Cardiac troponin is favored, since this marker provides greater specificity than CK-MB. However, since troponin results may remain elevated for up to 10 days, CK-MB is useful in assessing the timing of acute myocardial infarction.

However, biomarkers may be elevated in conditions unrelated to MI, so results must be interpreted in the context of clinical presentation and other available test results. Conditions unrelated to MI that may contribute to elevated biomarkers include sepsis, pulmonary embolus, renal failure, tachycardia, and valvular heart disease. Biomarkers have no role in screening for, or diagnosing, CAD outside of the presence of acute MI.

Stress testing with ECG. Exercise, when used as the stressor, can provide both diagnostic and prognostic information in patients with either suspected or known CAD. Both treadmill and bicycle protocols have been used to evaluate exercise time, intensity, and reproducibility of clinical symptoms. The standard 12-lead ECG, along with clinical symptoms and vital signs, is evaluated for changes during exercise. ECG criteria that have been standardized to suggest an abnormal test result rely on the finding of ST segment depression of 0.01mV (1 mm) that is horizontal or down sloping on three consecutive beats. Patients unable to exercise would normally undergo a pharmacologic stress test in conjunction with an imaging modality (see following section).

Strengths and limitations of stress testing with ECG. Stress testing is generally safe, widely available, well validated, and less costly compared with other forms of cardiac diagnostic tests. Stress testing can provide useful prognostic data. In a recent meta-analysis of the relevant studies, sensitivity and specificity were 68 percent and 77 percent, respectively, but values were lower among low-risk patients. A normal exercise ECG has excellent negative predictive value.

However, stress testing is associated with relatively high rates of false-positive results in women, and it cannot be reliably interpreted in patients with a variety of different baseline ECG abnormalities. Other limitations include difficult-to-interpret results in the setting of valvular heart disease, left ventricular hypertrophy, left bundle branch block, or patients on certain heart rate-lowering medications such as digoxin. Because of its low sensitivity, with correspondingly high likelihood of misclassifying patients, stress testing with ECG alone is not an adequate reference standard for CAD diagnosis.

Stress testing with imaging. The addition of a cardiac imaging component to the standard exercise ECG stress test is intended to improve test specificity by differentiating true-positive from false-positive ST segment depression during exercise. This differentiation is achieved through the absence of perfusion abnormalities (as in the case of myocardial perfusion imaging using single photon emission computed tomography) or left ventricular dysfunction (as in the case of stress echocardiography). Patients are typically imaged at baseline and then undergo ECG-monitored exercise, followed by imaging at peak exercise and recovery. Images are obtained for the purposes of detecting myocardial perfusion abnormalities or regional wall motion abnormalities. For single photon emission computed tomography, sensitivity is estimated to be 90 percent and specificity 72 percent. Exercise echocardiography is estimated to be 81 percent sensitive and 89 percent specific using stress-induced wall motion abnormalities.

Strengths and limitations of stress testing with imaging. Stress testing with imaging is a well-validated diagnostic test for CAD, with a highly negative predictive value. The procedure is widely available and noninvasive. Results of stress testing with imaging can guide management and treatment recommendations. The procedure is considered an appropriate diagnostic test in patients with known or suspect CAD who are at low to intermediate risk for cardiovascular events. However, stress testing with imaging is relatively expensive as well as time-intensive.
The procedure requires expertise in performance and interpretation. Also, it involves radiation exposure among patients injected with radiopharmaceuticals. Image quality for study interpretation may be limited in patients with suboptimal images due to attenuation artifacts from overlying soft tissue in single photon emission computed tomography or poor echocardiographic acoustic windows in patients who are obese or who have lung disease.

Tests for Diagnosing ACS

ACS is a term that is commonly used to describe the clinical presentation that includes acute onset of chest pain or other symptoms that suggest myocardial ischemia or infarct. ACS typically serves as a working diagnosis for such patients, pending the establishment or ruling out of specific diagnoses. There is no gold standard test for ACS. The standard ECG serves as one of the most important tests in the initial evaluation of patients who present with symptoms suggestive of ACS, but additional clinical and laboratory information is required to accurately differentiate patients with and without acute ischemic heart disease.

Summary for KQ 1

The strengths and limitations of the current diagnostic tests for the evaluation of suspected CAD or ACS represent the absence of a “one-size-fits-all” approach for cardiovascular risk assessment. In accordance with clinical guideline recommendations, the selection of the appropriate test must take into account the available expertise for both test performance and accurate test interpretation, while at the same time maximizing patient safety. In the research setting, we ideally want the best available reference test. Pragmatic clinical considerations, including guideline recommendations, legitimately influence this choice.

According to the ACC/AHA consensus guidelines, coronary angiography remains the best reference standard for diagnosing CAD. Through interrogation and identification of the coronary anatomy, angiography is currently the best available test to identify which patients may benefit from surgical intervention, medical management, or both. Among low-risk patients who are typically not referred for coronary angiography but who undergo clinical observation and/or noninvasive testing instead, several noninvasive diagnostic tests have served as an acceptable reference standard. In these patients, results have correlated with the incidence of cardiovascular events. In particular, stress tests (with or without imaging) provide clinicians with incremental risk prediction that informs management and treatment decisions. Stress tests also provide prognostically important data that have been associated with patient outcomes such as exercise capacity, hemodynamic response, and magnitude of ST segment abnormalities.

Table 2 summarizes our findings that, according to current guidelines, coronary angiography remains the preferred reference standard for the diagnosis of CAD, while exercise stress testing with imaging serves as an acceptable reference standard. Appropriate use of biomarkers is an acceptable reference standard for the diagnosis of acute MI but not of CAD. The standard 12-lead ECG is not an acceptable reference standard due to its poor accuracy in diagnosing CAD. In contrast, there is no gold standard diagnostic test for ACS, which is an “umbrella” term that serves primarily as a working diagnosis, pending results from further testing. In this context, the standard ECG plays a critical role in informing both the diagnosis and management of patients with ACS.
Table 2. Potential reference standards for diagnosing CADa or ACS

<table>
<thead>
<tr>
<th>Reference Standard</th>
<th>Level of Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary angiography</td>
<td>Preferred</td>
</tr>
<tr>
<td>Stress testing with imaging</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Imaging studies without exercise or pharmacological stress</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Resting 12-lead ECG</td>
<td></td>
</tr>
<tr>
<td>Stress testing with ECG</td>
<td></td>
</tr>
<tr>
<td>Biomarkers (applicable only for identifying myocardial injury)</td>
<td>Incomplete</td>
</tr>
</tbody>
</table>

aBased on current guidelines.28-31,33,34

Abbreviations: CAD = coronary artery disease; ECG = electrocardiogram

Analysis for KQ 2

Of the 11 potentially relevant devices identified by the gray and published literature searches, only the PRIME ECG and the LP 3000 system were evaluated in published studies that met our inclusion criteria. We did not identify any studies meeting our eligibility criteria that reported on the Predictor, Model 1200 EPX, MAC 5000, 3DMP, CarDx, CardioSoft, HyperQ, Cardiologic Explorer, or Vascular Explorer. We identified several published articles that evaluated the test performance of the 3DMP or the Predictor, but these studies did not meet inclusion criteria because the study population comprised patients with a high risk for CAD. We excluded two publications that evaluated the Procardio 5.0 because this device is neither FDA approved nor commercially available. The following sections are therefore restricted to analysis of PRIME ECG (10 studies) and LP 3000 (1 study).

KQ 2a—Evidence for Variability by Rater, Patient, or Device

Our search strategy did not identify any eligible studies that reported information on intra-rater, intra-patient, or intra-device variability. We identified a single study that evaluated the inter-rater variability of the PRIME ECG device.38 This study involved 150 eligible patients who presented to an emergency department at times when both an emergency physician trained in BSM test interpretation and a clinical study assistant trained in the operation of the PRIME ECG were on duty. Study patients were administered both a standard ECG and a PRIME ECG test. Twenty-eight faculty or resident emergency physicians participated in this study; each had previously completed a 4-hour training session during which basic electrophysiology, BSM device application, beat marker placement, and BSM interpretation were reviewed. All study physicians successfully passed an exam upon completion of the training session. The study also engaged three experts in BSM test interpretation. Standard ECG and PRIME ECG were provided electronically to these experts, none of whom had knowledge of patients’ clinical or laboratory data. Each BSM test was read by two expert raters. Discordant interpretations among the experts were adjudicated by a third.

Emergency physicians and BSM experts were charged with assigning each BSM reading into one of five categories: (1) normal, (2) nonspecific, (3) abnormal, (4) ischemia, or (5) infarction. The first two categories were considered to be a negative test result, and the latter three categories represented a positive test result. Of the 135 BSM tests interpreted by an expert overreader, there was agreement between the emergency physicians and BSM experts on 52 (39%) for negative test result readings and 63 (47%) positive test result readings. Fifteen (11%)
BSM tests were interpreted as negative by emergency physicians but positive by BSM experts, and 5 (4%) BSM tests were interpreted as positive by emergency physicians but negative by BSM experts. This result corresponds to a kappa statistic of 0.63 (95% CI, 0.53 to 0.72).

KQ 2b—Evidence for Test Performance

We identified 11 studies (represented by 14 articles) that evaluated the performance characteristics of a commercially available BSM or signal averaging ECG device (Table 3). All studies were prospective cohort studies, nine of which recruited consecutive patients. Ten studies (13 articles) evaluated the PRIME ECG BSM device,\(^\text{38-50}\) and one study evaluated the LP 3000 signal averaging ECG system.\(^\text{17}\) Ten of the eleven studies were considered fair quality because of (1) lack of details about the patient populations, (2) insufficient reporting of the methods and results, or (3) potential bias from lack of blinding by key study personnel.\(^\text{17,38-48}\) One study, the Optimal Cardiovascular Diagnostic Evaluation Enabling Faster Treatment of Myocardial Infarction (OCCULT MI) trial, was considered good quality.\(^\text{49,50}\) Of note, funding or material support for the PRIME ECG studies appeared to be linked to the manufacturer for all included studies of this device. This does not appear to be the case for the study of the LP 3000 system. We did not identify eligible studies that evaluated test performance or outcomes associated with the other eligible ECG-based signal averaging devices listed in Table 1 among patients that represented the target population for the purpose of this report. While screening articles for eligibility to meet inclusion criteria for this review, we did not identify any published studies that evaluated an ECG-based signal averaging device for the diagnosis of CAD or ACS in asymptomatic individuals.

Table 3 summarizes performance characteristics of the 11 studies included in this review.
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Included in Meta-analysis?</th>
<th>Study Quality</th>
<th>N Subjects</th>
<th>Setting</th>
<th>Threshold</th>
<th>Reference</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIME ECG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menown et al., 1998³⁹</td>
<td>Yes</td>
<td>Fair</td>
<td>Chest pain (n = 314)</td>
<td>Emergency department, medical wards or mobile CCU; controls from WHO screening program</td>
<td>Not specified; developed from 28 variables via logistic regression</td>
<td>Acute MI; criteria not specified</td>
<td>Sensitivity = 77% (123/160) Specificity = 85% (131/154)</td>
</tr>
<tr>
<td>Menown et al., 2001⁴₀</td>
<td>Yes</td>
<td>Fair</td>
<td>Ischemic-type chest pain < 24 hours and 1 mm ST segment depression (n = 24)</td>
<td>Cardiology via emergency department or mobile CCU</td>
<td>Algorithm: visual display using QRS Y ST-T isointegrals and ST60 isopotential + multivariate model</td>
<td>MI by chest pain > 20 minutes + abnormal biomarkers</td>
<td>Sensitivity = 88% (7/8) Specificity = 75% (12/16) EC/G Sensitivity = 50% (4/8) Specificity = 88% (14/16)</td>
</tr>
<tr>
<td>Mcclelland et al., 2003⁴¹</td>
<td>Yes</td>
<td>Fair</td>
<td>Ischemic-type chest pain (n = 103)</td>
<td>Cardiology via emergency department or mobile CCU</td>
<td>Algorithm: QRS width and axis, QRS and ST-T isointegrals, ST0 and ST60 isopotentials</td>
<td>MI by chest pain > 20 minutes + abnormal biomarkers</td>
<td>Sensitivity = 64% (34/53) Specificity = 94% (47/50) EC/G Sensitivity = 45% (24/53) Specificity = 94% (47/50)</td>
</tr>
<tr>
<td>Maynard et al., 2003⁴⁶</td>
<td>No</td>
<td>Fair</td>
<td>Ischemic-type chest pain (n = 56) in the presence of left bundle branch block. Includes patients at high risk who were administered fibrinolytic therapy.</td>
<td>Acute medical cardiology unit in a tertiary hospital</td>
<td>Reversal of image</td>
<td>MI by abnormal biomarkers</td>
<td>Sensitivity = 67% (12/18) Specificity = 71% (27/38)</td>
</tr>
<tr>
<td>Study ID</td>
<td>Included in Meta-analysis?</td>
<td>Study Quality</td>
<td>N Subjects</td>
<td>Setting</td>
<td>Threshold</td>
<td>Reference</td>
<td>Outcomes</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Carley et al., 2005</td>
<td>Yes</td>
<td>Fair</td>
<td>Ischemic-type chest pain, only low/moderate risk patients (n = 211)</td>
<td>Emergency department at a university-affiliated teaching hospital</td>
<td>NR</td>
<td>MI by standard ECG criteria, abnormal biomarkers, or autopsy</td>
<td>Sensitivity = 18% (3/17) Specificity = 87% (169/194)</td>
</tr>
<tr>
<td>Owens et al., 2006 and Navarro et al., 2003</td>
<td>Yes</td>
<td>Fair</td>
<td>Ischemic-type chest pain (n = 427). Combined training and validation sets.</td>
<td>Cardiology via emergency department or mobile CCU</td>
<td>Algorithm: epicardial – ST0 isopotential from subset of study sample</td>
<td>MI by abnormal biomarkers</td>
<td>Physician-read BSM Sensitivity = 75% (154/205) Specificity = 91% (202/222)</td>
</tr>
<tr>
<td>Owens et al., 2008 and Owens et al., 2004</td>
<td>Yes</td>
<td>Fair</td>
<td>Ischemic-type chest pain (n = 755)</td>
<td>Cardiology via emergency department or mobile CCU</td>
<td>Region specific ST segment elevation on isopotential map</td>
<td>MI by abnormal biomarkers</td>
<td>Sensitivity = 76% (402/529) Specificity = 92% (208/226)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECG Sensitivity = 45% (238/529) Specificity = 92% (208/226)</td>
</tr>
<tr>
<td>Study ID</td>
<td>Included in Meta-analysis?</td>
<td>Study Quality</td>
<td>N Subjects</td>
<td>Setting</td>
<td>Threshold</td>
<td>Reference</td>
<td>Outcomes</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Fermann et al., 2009<sup>38</sup></td>
<td>Yes</td>
<td>Fair</td>
<td>Ischemic-type chest pain (n =150)</td>
<td>Emergency department at an urban tertiary care hospital</td>
<td>NR. Data reported for both any abnormality on index test and abnormalities not known to be old. We report results of any abnormality on ECG or PRIME ECG test</td>
<td>Three separate criteria: (1) MI by abnormal biomarkers or > 70% stenosis or abnormal noninvasive testing or CABG, (2) MI by abnormal biomarkers or > 70% stenosis or abnormal noninvasive testing or CABG or discharge diagnosis of MI or ACS, (3) MI by abnormal biomarkers or > 70% stenosis or abnormal noninvasive testing or CABG or discharge diagnosis of MI or ACS or postdischarge event</td>
<td>Criteria 1: Sensitivity = 63% Specificity = 59% ECG Sensitivity = 53% Specificity = 63% Criteria 2: Sensitivity = 64% Specificity = 59% ECG Sensitivity = 59% Specificity = 65% Criteria 3: Sensitivity = 40% Specificity = 60% ECG Sensitivity = 60% Specificity = 66%</td>
</tr>
</tbody>
</table>

DRAFT – Not for citation or dissemination
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Included in Meta-analysis?</th>
<th>Study Quality</th>
<th>N Subjects</th>
<th>Setting</th>
<th>Threshold</th>
<th>Reference</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'Neil et al., 2010 and Hoekstra et al., 2009</td>
<td>Yes</td>
<td>Good</td>
<td>Chest pain or symptoms suspicious for ACS without STEMI (n = 1513)</td>
<td>High-volume tertiary care center emergency departments in U.S.</td>
<td>Core laboratory with cardiologists and emergency physicians blinded to clinical results and test readings</td>
<td>MI: final diagnosis of NSTEMI or UA, with any elevated troponin</td>
<td>ACS: according to ACC/AHA guidelines for the diagnosis of ACS</td>
</tr>
<tr>
<td>Ornato et al., 2009</td>
<td>Yes</td>
<td>Fair</td>
<td>Patients suspected of having ACS (n = 589)</td>
<td>Emergency departments</td>
<td>ST J-point elevation of prespecified magnitude and location</td>
<td>2 separate criteria: (1) elevated CK-MB (2) elevated troponin</td>
<td>Criteria 1 (n = 364): Sensitivity = 100% (22/22) Specificity = 96% (330/342) ECG Sensitivity = 73% (16/22) Specificity = 97% (332/342) Criteria 2 (n = 225): Sensitivity = 93% (26/28) Specificity = 95% (187/197) ECG Sensitivity = 61% (17/28) Specificity = 96% (189/197)</td>
</tr>
<tr>
<td>Study ID</td>
<td>Included in Meta-analysis?</td>
<td>Study Quality</td>
<td>N Subjects</td>
<td>Setting</td>
<td>Threshold</td>
<td>Reference</td>
<td>Outcomes</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>LP 3000</td>
<td>No</td>
<td>Fair</td>
<td>Typical angina (n = 126)</td>
<td>Hospital in Greece</td>
<td>QRS prolongation > 5 msec</td>
<td>CAD by coronary angiography</td>
<td>Sensitivity = 69% (75/108) Specificity = 89% (16/18)</td>
</tr>
<tr>
<td>Michaelides et al., 1999<sup>17</sup></td>
<td>No</td>
<td>Fair</td>
<td>Typical angina (n = 126)</td>
<td>Hospital in Greece</td>
<td>QRS prolongation > 5 msec</td>
<td>CAD by coronary angiography</td>
<td>Sensitivity = 69% (75/108) Specificity = 89% (16/18)</td>
</tr>
</tbody>
</table>

Abbreviations: ACC = American College of Cardiology; AHA = American Heart Association; BSM = body surface mapping; CCU = coronary care unit; ECG = electrocardiogram; MI = myocardial infarction; WHO = World Health Organization
PRIME ECG Device

Of the 10 eligible studies evaluating the test performance of the PRIME ECG BSM device, 6 were conducted by a research group in Belfast, Ireland. These investigators published 8 eligible articles from 1998 to 2008 on sequential series of consecutive patients with ischemic-like chest pain as they presented to a 24-hour physician-manned mobile coronary care unit (cardiac ambulance), the emergency department, or medical wards in Northern Ireland. Excluding one study of a subsample of 56 patients recruited from 1995 to 1999 with left bundle branch block, which may have included data reported in another eligible publication, and excluding data obtained from patients that contributed to training sets in preparation for validation datasets, this series of articles appears to represent a total of 2274 patients recruited from 1995 to 2004. It was unclear whether these mobile coronary care units in Ireland served a population with chest pain similar to the population served by U.S. emergency departments, or if the units tended to serve patients triaged to be at high risk for acute myocardial ischemia. A study sample with more severe CAD would be expected to bias test performance toward greater sensitivity.

Because the PRIME ECG device algorithm is evolving, the interpretation methods and potentially the accuracy of the device may have changed over time. In the initial study published in 1998, a regression model was developed from 28 candidate variables. In later studies, slightly different criteria (sometimes specified a priori and in other instances apparently derived from the data) were described. In one study of the PRIME ECG, the authors stated, “We acknowledge that the performance of the algorithm used in this study is disappointing, particularly in terms of specificity, and we are currently developing an algorithm to improve specificity whilst maintaining sensitivity.”

The changing criteria for an abnormal PRIME ECG result could lead to variable performance across our included studies. Furthermore, criteria derived from the observed data could overestimate accuracy. In all studies, the PRIME ECG was compared to cardiac biomarkers, which served as a test for myocardial injury. Some studies either used a single set of biomarkers or did not specify the number of sets obtained (at least two sets, 8 hours apart, are needed for an adequate reference standard). Three studies specified that the PRIME ECG was blindly interpreted and compared to the reference standard. Only one study described the reference standard as blindly interpreted relative to the PRIME ECG. If abnormal ranges for cardiac biomarkers were prespecified, it is unlikely that interpretation would be influenced by the index test results.

One study from this research group included in this report involved 56 patients who presented with chest pain suggestive of acute MI in the presence of left bundle branch block on the initial ECG. These patients were among the consecutive patients admitted to the acute medical cardiology unit included in the early published articles by the research group in Belfast, Ireland. This subset of patients was recruited between September, 1995, and November, 1999. At that time, the standard of care included initiating thrombolytic therapy in patients with left bundle branch block when acute MI was suspected. The PRIME ECG was administered before or within 15 minutes of administering thrombolytic therapy among the patients in this series who were treated with thrombolytics. In this sample of 56 patients, the sensitivity and specificity of the PRIME ECG in identifying acute MI as diagnosed by elevated biomarkers was 67 percent and 71 percent, respectively. A positive PRIME ECG test result—defined as loss of mirror image reversal in the comparison of QRS and ST-T isointegral maps—was associated with a significantly higher risk of having an acute MI (odds ratio [OR] 4.9; 95% CI, 1.5 to 16.4; p =
We excluded this study and its data from our meta-analysis because of the likelihood of duplicate data and because the other studies used different criteria for defining a positive result in patients with left bundle branch block, in which ST elevation on the ECG was not a valid indicator of acute MI.

The research group from Ireland contributed data to another study included in this report, along with data from consecutive patients recruited from emergency departments in two hospitals in the U.S. and one in England. A total of 647 adults from these 4 recruitment sites who presented to the emergency department within 12 hours of onset of symptoms consistent with or suggestive of acute MI or unstable angina met inclusion criteria and consented to participate. Of these, 589 patients with standard ECG, PRIME ECG, and biomarker data were included in the analysis. Test performance was calculated for both the standard ECG and the PRIME ECG compared with elevated CK-MB enzymes (n = 364) and to elevated troponin levels (n = 225) for diagnosing acute MI. With CK-MB enzyme elevation as the gold standard, the sensitivity and specificity for the PRIME ECG was 100 percent and 97 percent, respectively, compared with 73 percent and 97 percent for the standard ECG. With troponin elevation as the gold standard, the sensitivity and specificity were 93 percent and 95 percent, respectively, for the PRIME ECG and 61 percent and 96 percent for the standard ECG.

We identified two eligible articles from the multicenter, prospective, cohort-blinded OCCULT MI trial. This study evaluated the PRIME ECG among 1830 adults at high to moderate risk for adverse cardiovascular outcomes who presented to a tertiary care emergency department in the U.S. with chest pain or symptoms suspicious for ACS. Results were reported separately for patients who ultimately received a study-adjudicated diagnosis of STEMI (n = 91), NSTEMI or unstable angina (n = 206), or non-MI ACS (n = 408). Most of the patients who ultimately received a study-adjudicated diagnosis of STEMI had ST elevations on ECG at presentation and as such were known to be high risk for CAD prior to administration of the PRIME ECG. Therefore, since our report focuses on patients at low to intermediate risk for CAD with symptoms suggestive of ACS, we report only the data from patients in this study who ultimately received a study-adjudicated diagnosis of NSTEMI, unstable angina, or ACS. Among the NSTEMI or unstable angina patients, sensitivity and specificity were 19.4 percent (95% CI, 14.6 to 25.4) and 93.9 percent (95% CI, 92.4 to 95.1), respectively, for the PRIME ECG and 10.7 percent (95% CI, 5.0 to 10.0) and 96.4 percent (95% CI, 95.1 to 97.3), respectively, for the 12-lead ECG. Among the ACS patients, sensitivity and specificity were 12.3 percent (95% CI, 9.4 to 15.8) and 93.7 percent (95% CI: 92.1 to 95.0), respectively, for the PRIME ECG and 7.1 percent (95% CI, 5.0 to 10.0) and 96.4 percent (95% CI, 95.1 to 97.3), respectively, for the 12-lead ECG. This is the only study included in our report that evaluated the test performance of the PRIME ECG for both NSTEMI and ACS patients; for consistency, we used the sensitivity and specificity data among the NSTEMI sample in our meta-analysis reported below.

A study that involved 150 patients with ischemic-type chest pain recruited from an emergency department at an urban tertiary care hospital was conducted in the U.S. Three separate sets of criteria were used to define MI or ACS: (1) abnormal biomarkers or > 70 percent coronary artery stenosis by cardiac catheter evaluation or abnormal noninvasive testing or revascularization, (2) in addition to first criteria, a diagnosis of MI or ACS at time of discharge from the hospital, and (3) in addition to the first and second criteria, a postdischarge event, defined as a repeated visit to the emergency department with chest pain or ischemic symptoms, recurrent MI, catheterization, revascularization, or death. Sensitivity and specificity for the PRIME ECG were 63 percent and 59 percent for the first criteria, 64 percent and 59 percent for
the second criteria, and 40 percent and 60 percent for the third criteria. In comparison, sensitivity and specificity for the 12-lead ECG were 53 percent and 63 percent for the first criteria, 59 percent and 65 percent for the second criteria, and 60 percent and 66 percent for the third criteria. The first criteria is most similar to the gold standard for diagnosis of acute MI used in the other studies in this report; for this reason, we included the sensitivity and specificity estimates with the first criteria as the gold standard in our meta-analysis, reported below.

The last of the eligible studies on the PRIME ECG device included in this report involved 211 patients with ischemic-type chest pain who were specifically identified at time of enrollment to be of low or moderate risk for CAD. Patients were recruited from the emergency department at a university-affiliated teaching hospital in Manchester, England. MI was defined by standard ECG criteria, abnormal cardiac biomarkers, or autopsy. In this population, the sensitivity of the PRIME ECG was 18 percent and the specificity 87 percent, respectively, compared with zero percent and 95 percent for the standard ECG.

LP 3000 Signal Averaging System

The one eligible study we identified that evaluated a signal averaging ECG device was conducted in Greece and published in 1999. This study was a prospective cohort study with coronary angiography as the criterion for diagnosing clinically significant CAD. In this study, 126 consecutive patients referred to a hospital for a first period of typical angina underwent both standard ECG and testing with the LP 3000 signal averaging ECG system. All patients also underwent coronary angiography. The signal averaging ECG test was considered positive in the presence of QRS prolongation of more than 5 milliseconds. QRS prolongation on the signal averaging ECG was associated with a sensitivity and specificity of 70 percent and 89 percent, respectively, compared to 56 percent and 89 percent for ST changes detected by 12-lead ECG. The improved sensitivity of signal averaging ECG relative to 12-lead ECG was statistically significant (p < 0.01).

Meta-analysis

We used a bivariate random-effects model to combine results across the 10 included PRIME ECG studies (Table 4). The sensitivity and specificity were 71.1 percent (95% CI, 45.6 to 87.8) and 90.2 percent (95% CI, 83.2 to 94.4), respectively. Studies were statistically heterogeneous for the LR+ (Q = 122.9, df = 9, p < 0.001) and for the LR- (Q = 315.0, df = 9, p < 0.001; I² = 97.1%). The summary estimate for the LR+ was 6.3 (95% CI, 3.3 to 12.1) and for the LR- was 0.30 (95% CI, 0.16 to 0.56). We performed a sensitivity analysis excluding two studies, namely, the initial study that most clearly used a different diagnostic algorithm and a second study with a very small sample size that was disproportionately weighted in the random effects meta-analysis. The sensitivity and specificity for the remaining studies were 68.4 percent (95% CI, 35.1 to 89.7) and 91.4 percent (95% CI, 83.6 to 95.7), respectively. The remaining studies were heterogeneous for the LR+ (Q = 122.1, df = 7, p < 0.001, I² = 94.3%) and LR- (Q = 277.4, df = 7, p < 0.001, I² = 97.5%). The LR+ (6.7; 95% CI, 3.8 to 15.9) and LR- (0.31; 95% CI, 0.14 to 0.69) were not substantially changed. Using these latter estimates of test performance, an abnormal PRIME ECG test in a patient with a pretest probability for clinically significant CAD of 50 percent would yield a posttest probability of 53 percent. A normal PRIME ECG would yield a posttest probability of 2.5 percent.

For the 10 studies that evaluated the 12-lead ECG, we computed performance characteristics in the same manner (Table 5). The sensitivity and specificity were 43.1 percent (95% CI, 25.8 to
62.2) and 94.4 percent (95% CI, 88.4 to 97.4), respectively. There was significant heterogeneity for both the LR+ (Q = 89.8, df = 9, p < 0.001) and LR- (Q = 209.5, df = 9, p < 0.001). The 12-lead ECG had a summary LR+ of 7.2 (95% CI 3.2 to 16.3) and LR- of 0.57 (0.44 to 0.74).

We performed a sensitivity analysis excluding the study with a very small sample size and the study not evaluating PRIME ECG performance. The sensitivity and specificity for the remaining studies were 40.5 percent (95% CI, 19.6 to 65.5) and 95.0 percent (95% CI, 87.9 to 98.0), respectively. The remaining studies were heterogeneous for the LR+ (Q = 89.7, df = 7, p < 0.001, I² = 92.2%) and LR- (Q = 195.4, df = 7, p < 0.001, I² = 96.4%). The LR+ (7.5; 95% CI 2.7 to 21.1) and LR- (0.58; 0.42 to 0.80) were not substantially changed. Using these latter estimates of test performance, a patient with a pretest probability for clinically significant CAD of 50 percent, a standard 12-lead ECG suggesting ischemia would yield a posttest probability of 54 percent. A standard 12-lead ECG without evidence of ischemia would yield a posttest probability of 3.6 percent.

The 12-lead ECG had a slightly higher LR+ (a positive test increases the likelihood of disease), but the PRIME ECG had a lower LR- (a negative test lowers the likelihood of disease). However, neither one of these differences was statistically significant as judged by the overlapping confidence intervals, nor were they clinically significant as judged by the similar posttest probabilities.

All studies used myocardial injury as the reference standard and included subjects with ischemic-type chest pain. Patients with ischemic-type chest pain certainly form an important subgroup of the target population, but patients at lower risk for CAD (such as individuals with atypical chest pain) were not included. Applicability was also limited by the reference standard. Myocardial injury is an important outcome of interest, but clinicians are also concerned with identifying patients with acute ischemic heart disease prior to myocardial injury.
Table 4. PRIME ECG performance characteristics

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Sample Size</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Likelihood Ratio</th>
<th>Negative Likelihood Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menown et al., 1998(^{39})</td>
<td>314</td>
<td>76.9%</td>
<td>85.1%</td>
<td>5.1</td>
<td>0.27</td>
</tr>
<tr>
<td>Menown et al., 2001(^{40})</td>
<td>24</td>
<td>87.5%</td>
<td>75.0%</td>
<td>3.5</td>
<td>0.17</td>
</tr>
<tr>
<td>Mccllelland et al., 2003(^{41})</td>
<td>103</td>
<td>64.2%</td>
<td>94.0%</td>
<td>10.7</td>
<td>0.38</td>
</tr>
<tr>
<td>Maynard et al., 2003(^{46})</td>
<td>56</td>
<td>66.7%</td>
<td>71.1%</td>
<td>2.3</td>
<td>0.47</td>
</tr>
<tr>
<td>Carley et al., 2005(^{45})</td>
<td>211</td>
<td>17.6%</td>
<td>87.1%</td>
<td>1.4</td>
<td>0.94</td>
</tr>
<tr>
<td>Owens et al., 2006(^{48}) and Navarro et al., 2003(^{42})</td>
<td>427</td>
<td>75.1%</td>
<td>91.0%</td>
<td>8.3</td>
<td>0.27</td>
</tr>
<tr>
<td>Owens et al., 2008(^{44}) and Owens et al., 2004(^{43})</td>
<td>755</td>
<td>76.0%</td>
<td>92.0%</td>
<td>9.5</td>
<td>0.26</td>
</tr>
<tr>
<td>Ornato et al., 2009(^{47})</td>
<td>364</td>
<td>100.0%</td>
<td>96.5%</td>
<td>1.4</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>CK-MB</td>
<td>Troponin</td>
<td>CK-MB</td>
<td>Troponin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>92.9%</td>
<td>94.9%</td>
<td>18.3</td>
<td>0.08</td>
</tr>
<tr>
<td>Fermann et al., 2009(^{38})</td>
<td>150</td>
<td>63.4%</td>
<td>59.6%</td>
<td>1.6</td>
<td>0.61</td>
</tr>
<tr>
<td>O’Neil et al., 2010(^{49}) and Hoekstra et al., 2009(^{50})</td>
<td>1513</td>
<td>19.4%</td>
<td>93.9%</td>
<td>3.2</td>
<td>0.86</td>
</tr>
<tr>
<td>Summary (95% CI) *Omits Maynard et al., 2003(^{46})</td>
<td>4086</td>
<td>71.1%</td>
<td>90.2%</td>
<td>6.3</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>(45.6% to 87.8%)</td>
<td>(83.2% to 94.4%)</td>
<td>(3.3 to 12.1)</td>
<td>(0.16 to 0.56)</td>
<td></td>
</tr>
<tr>
<td>Summary (95% CI) *Omits Maynard et al., 2003(^{46}), Menown et al., 1998(^{39}), and Menown et al., 2001(^{45})</td>
<td>3748</td>
<td>68.4%</td>
<td>91.4%</td>
<td>6.7</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>(35.1% to 89.7%)</td>
<td>(83.6% to 95.7%)</td>
<td>(2.8 to 15.9)</td>
<td>(0.14 to 0.69)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; ECG = electrocardiogram
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Sample Size</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Likelihood Ratio</th>
<th>Negative Likelihood Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menown et al., 2001<sup>40</sup></td>
<td>24</td>
<td>50.0%</td>
<td>87.5%</td>
<td>4.0</td>
<td>0.57</td>
</tr>
<tr>
<td>McClelland et al., 2003<sup>41</sup></td>
<td>103</td>
<td>45.3%</td>
<td>94.0%</td>
<td>7.5</td>
<td>0.58</td>
</tr>
<tr>
<td>Carley et al., 2005<sup>45</sup></td>
<td>211</td>
<td>0.0%</td>
<td>95.9%</td>
<td>0.64</td>
<td>1.0</td>
</tr>
<tr>
<td>Owens et al., 2006<sup>48</sup> and Navarro et al., 2003<sup>42</sup></td>
<td>427</td>
<td>60.0%</td>
<td>99.1%</td>
<td>66.6</td>
<td>0.40</td>
</tr>
<tr>
<td>Owens et al., 2008<sup>44</sup> and Owens et al., 2004<sup>43</sup></td>
<td>755</td>
<td>45.0%</td>
<td>92.0%</td>
<td>5.6</td>
<td>0.60</td>
</tr>
<tr>
<td>Ornato et al., 2009<sup>47</sup></td>
<td>CK-MB</td>
<td>364</td>
<td>72.7%</td>
<td>97.1%</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>Troponin</td>
<td>225</td>
<td>38.7</td>
<td>36.1</td>
<td>15.0</td>
</tr>
<tr>
<td>Fermann et al., 2009<sup>38</sup></td>
<td>150</td>
<td>52.7%</td>
<td>63.2%</td>
<td>1.4</td>
<td>0.75</td>
</tr>
<tr>
<td>O’Neil et al., 2010<sup>49</sup> and Hoekstra et al., 2009<sup>50</sup></td>
<td>1513</td>
<td>10.7%</td>
<td>96.4%</td>
<td>3.0</td>
<td>0.93</td>
</tr>
<tr>
<td>Michaelides et al., 1999<sup>17</sup></td>
<td>126</td>
<td>55.6%</td>
<td>88.9%</td>
<td>5.0</td>
<td>0.50</td>
</tr>
<tr>
<td>Summary (95% CI)</td>
<td>3898</td>
<td>43.1%</td>
<td>94.4%</td>
<td>7.2 (3.2 to 16.3)</td>
<td>0.57 (0.44 to 0.74)</td>
</tr>
<tr>
<td>Summary (95% CI) *Omits Menown et al., 2001<sup>40</sup></td>
<td>3874</td>
<td>42.4%</td>
<td>94.7%</td>
<td>7.5 (3.1 to 18.4)</td>
<td>0.57 (0.43 to 0.75)</td>
</tr>
<tr>
<td>Summary (95% CI) *Omits Menown et al., 2001<sup>40</sup> and Michaelides et al., 1999<sup>17</sup></td>
<td>3748</td>
<td>40.5%</td>
<td>95.0%</td>
<td>7.5 (2.7 to 21.1)</td>
<td>0.58 (0.42 to 0.80)</td>
</tr>
</tbody>
</table>

Abbreviations: CI = confidence interval; ECG = electrocardiogram
KQ 2c—Evidence for Impact on Diagnostic Decisionmaking

Our search strategy did not identify any eligible studies pertinent to KQ 2c.

KQ 2d—Evidence for Impact on Patient Outcomes

We identified two studies represented by three articles that collected data on long-term patient outcomes. The multicenter, prospective, cohort-blinded OCCULT MI trial\(^{49,50}\) evaluated the PRIME ECG among 1830 adults at high to moderate risk for adverse cardiovascular outcomes who presented to a tertiary care emergency department with chest pain or symptoms suspicious for ACS. The primary aim of this study was to test the hypothesis that individuals with STEMI detected only by the PRIME ECG would have similar angiographic pathology and similar mortality and morbidity rates compared with individuals with STEMI detected by standard ECG. A preplanned secondary analysis compared outcomes of patients with STEMI with those without STEMI. Among the 1513 patients with available outcome data, ST elevation detected by the PRIME ECG was associated with increased mortality (OR 11.2; 95% CI, 1.8 to 67). ST elevation on a standard 12-lead ECG, however, was not predictive of adverse outcomes in this sample of patients. There are at least two interpretations of these findings: (1) the PRIME ECG device correctly identified patients that had a false-negative ECG, or (2) a positive test result on the PRIME ECG device may influence clinical decisionmaking in a way that results in harm, relative to the standard ECG. Implications of this finding on the need for further research are discussed in the Future Research section that follows.

Another study followed patients who initially presented with symptoms suggestive of ACS both through their hospital course and after discharge from the hospital.\(^{38}\) Discharge diagnoses of either MI or ACS were recorded, as were follow-up events, defined as a repeated visit to the emergency department with chest pain or ischemic symptoms, recurrent MI, catheterization, revascularization, or death. Rates of MI or ACS diagnoses or follow-up events were not reported, but the authors factored these patient outcomes in two of three separate criterion standards to calculate the sensitivities and specificities of both standard ECG and PRIME ECG.

Summary for KQ 2

In summary, we found two ECG-based signal analysis devices for which there were English-language, peer-reviewed studies of patients at low to intermediate risk for CAD who present with acute-onset chest pain or other symptoms suggestive of ACS. These devices were the PRIME ECG and the LP 3000 signal averaging system. Only one study reported inter-rater variability data. This study demonstrated that attending and resident emergency physicians had reasonably good agreement with experts in BSM interpretation in identifying negative versus positive findings on the BSM device after undergoing a 4-hour training session. Nine studies used elevated biomarkers as the criterion standard for comparing the test performance of the PRIME ECG relative to the standard ECG. One study, the OCCULT MI trial, evaluated both test performance and prognostic utility of the PRIME ECG relative to the standard ECG, using a comprehensive criterion standard that resulted in study-adjudicated diagnoses of MI or ACS. Meta-analysis of the 8 studies that evaluated the PRIME ECG demonstrated 68.4 percent sensitivity (95% CI, 35.1 to 89.7) and 91.4 percent specificity (95% CI, 83.6 to 95.7) for detecting MI (with all but one study using elevated cardiac biomarkers as the reference standard). Meta-analysis of the same eight studies that evaluated the 12-lead ECG demonstrated...
40.5 percent sensitivity (95% CI, 19.6 to 65.5) and 95.0 percent specificity (95% CI, 87.9 to 98.0) for detecting MI. These differences in test performance between the PRIME ECG and the 12-lead ECG are not statistically significant as judged by the overlapping confidence intervals.

The study that compared the LP 3000 with the standard ECG to identify patients with clinically significant CAD used coronary angiography as the criterion standard. Results from this study suggest that the LP 3000 may have higher sensitivity and specificity than the standard ECG for identifying patients with ACS who have clinically significant CAD.

We did not identify any studies that directly assessed the impact of ECG-based signal analysis devices on clinical decisionmaking. We identified two studies that collected long-term outcome data, but one of them did not report those findings. The one study that reported long-term patient outcomes found that, among 1513 patients who did not have STEMI, ST elevation detected by the PRIME ECG was associated with increased mortality (OR 11.2; 95% CI, 1.8 to 67). ST elevation on a standard 12-lead ECG, however, was not predictive of adverse outcomes in this sample of patients.
Discussion

Summary of Findings

The combined gray and published literature searches identified 11 commercially available ECG-based devices used to diagnose CAD or to detect ACS. Of these, 8 are FDA cleared for marketing. Our search of the English-language literature identified 11 studies represented by 14 articles that reported on performance characteristics of one BSM device (PRIME ECG) and one signal averaging ECG device (LP 3000) in patients at low to intermediate risk for CAD who presented with chest pain or other symptoms suggestive of ACS.

The PRIME ECG has been evaluated in 10 studies by 3 different groups of investigators. Seven of these studies enrolled subjects that may have been at higher risk than the target population for this report, and nine compared the PRIME ECG to an incomplete reference standard that detects only acute myocardial injury. A single large, good-quality study49,50 estimated the sensitivity and specificity of the PRIME ECG in the diagnosis of MI and ACS in patients at low to intermediate risk for CAD who presented with symptoms suggestive of ACS.

The available published evidence suggests that the PRIME ECG device may demonstrate higher sensitivity than the standard 12-lead ECG for identifying patients with ischemic-type chest pain, with myocardial injury as assessed by biomarkers as the reference standard. The 95-percent confidence interval of the estimates of sensitivity for these two tests overlaps, such that the observed differences are not statistically significant. The magnitude of the difference in sensitivity (68\% for the PRIME ECG versus 41\% for the standard ECG) is, however, likely to be clinically significant. These findings do not provide compelling evidence of a real difference in test performance for these two tests, but it is possible that study heterogeneity or small sample sizes, or both, contribute to the wide and overlapping 95 percent confidence intervals, thereby obscuring a real difference that could be clinically meaningful. There does not, however, appear to be a real difference in specificity between the two tests.

The OCCULT MI trial demonstrated that, among patients with symptoms suspicious for ACS who did not present with STEMI, the PRIME ECG provided a significant increase over the 12-lead ECG for MI or ACS, but the specificity was lower and there was no difference between the two tests in the negative or positive likelihood ratios. The authors concluded that the PRIME ECG provides early risk stratification information that identifies patients at high risk for MI, ACS, and adverse clinical outcomes. Our search identified a single eligible study for the LP 3000 signal averaging ECG that suggested this device demonstrates better sensitivity than the resting 12-lead ECG in identifying which patients with acute chest pain have underlying CAD.
Applicability of Current Studies

Eight of the eleven studies included in this report had potentially significant limitations that may affect the applicability of the findings to the target population of patients at low to intermediate risk for CAD who present for medical care with symptoms suggestive of ACS. Six studies were conducted exclusively in Ireland among a population that included patients treated in a mobile cardiac care unit, which suggests a patient population at higher risk, on average, than patients at low to intermediate risk who present to outpatient or emergency facilities in the U.S. Furthermore, the PRIME ECG algorithm appears to have evolved over the 10-year span of these articles, thereby limiting the applicability of the findings from the earlier studies. Two other studies also were conducted in European countries (England and Greece) in settings or among patient populations that may not be equivalent to those typically found in the U.S. The remaining three studies have the highest applicability because they included patients recruited in the U.S. and included patients who represent the target population for the purpose of this report.

Strengths and Limitations of This Review

The strength of our search strategy was a gray literature search to identify relevant devices. Intentionally, we did not use electronic search filters to search the gray literature, given that filters often inadvertently exclude relevant studies. The limitations of our search strategy were (1) an absence of standardized, widely accepted, reliable, and validated methods for searching the gray literature, (2) that some of the pertinent evidence was proprietary and not accessible via manufacturers’ Web sites and that we did not request information from manufacturers directly, and (3) that, in general, identifying test accuracy studies is more difficult than identifying studies of therapeutic interventions.

We relied primarily on published studies to identify potentially relevant devices. Peer-reviewed publications, however, do not always include complete information about investigational devices or methods. We therefore had difficulty tracking the lineage of both the devices and the proprietary data transformation algorithms that are central to signal analysis technologies. We do not know if the devices or the mathematical algorithms underlying the technology have remained constant over time. This problem may be common to formal evaluations of medical devices for which potentially significant changes over time are not documented in the public record.

Future Research

Bossuyt and colleagues have proposed a framework for new test evaluation that may help guide future research pertaining to ECG-based signal averaging technologies. This framework considers new diagnostic tests as either potential replacement, triage, or add-on tests. Bossuyt argues that in order to determine if a new test can replace an existing one, the diagnostic accuracy of both tests needs to be compared in the same patient sample since the sensitivity and specificity of a test can vary across subgroups. Furthermore, the new tests should be compared to existing tests using the same reference standard. Most of the studies included in this report
employed this study design. With the exception of the OCCULT MI trial, which used study-adjudicated diagnosis informed by several different sources, however, none of the studies used a fully adequate reference test. Elevated biomarkers alone serve as an incomplete reference standard and cannot readily differentiate acute MI from reversible ischemia. Similarly, coronary angiography, which was used as the reference standard in two of the included studies, is considered the criterion standard for CAD but cannot by itself identify patients with acute ischemic heart disease.

Replication of the OCCULT MI study potentially could provide very important information about the relative value of an ECG-based signal analysis device relative to the standard ECG to inform decisionmaking and improve patient outcomes among patients with ACS. The OCCULT MI study demonstrated that that among patients who were not ultimately diagnosed as having STEMI, ST elevation detected by the PRIME ECG was associated with increased mortality, whereas ST elevation on a standard 12-lead ECG was not predictive of adverse outcomes in this sample of patients. There are at least two interpretations of these findings: (1) the PRIME ECG correctly identified patients that had a false-negative ECG, or (2) a positive test result on the PRIME ECG may influence clinical decisionmaking in a way that results in harm, relative to the standard ECG. Further study is needed to confirm or investigate this finding, and more research along these lines may provide useful information about the tradeoff between improving the false-negative rate of resting ECG versus initiating further testing or treatment for patients with ACS who have a normal (or nondiagnostic) ECG test result and a positive test result on a body surface mapping device.

Another line of research could investigate whether an ECG-based signal analysis device could serve to complement the findings from standard 12-lead ECGs as “add-on” tests. Add-on tests could be used in a subgroup of patients where diagnosis needs clarification. For example, add-on tests could be used to further evaluate a patient who presents with a normal ECG but who nonetheless is having active chest pain. An add-on test may be able to help clarify whether such a patient is having chest pain due to cardiac etiologies that are undetected by the 12-lead ECG, or chest pain due to a noncardiac cause. Add-on tests are attractive because they offer noninvasive, accurate alternatives to the standard 12-lead ECG. However, add-on tests are less attractive in that they are more expensive, more time consuming for medical personnel, and currently have limited availability in clinical settings. The add-on test strategy can potentially increase the sensitivity of the existing testing standards—but possibly at the expense of specificity. Study designs that are more efficient than the fully paired evaluation could be used to evaluate this add-on strategy.

The available published literature on ECG-based signal analysis technologies does not provide answers to the key questions surrounding debate about whether these technologies have an impact on diagnostic decisionmaking or patient outcomes. However, these questions may best be addressed by RCTs. Depending on the specific question, a number of trial designs could be considered, including a clinical trial of test-positive patients, with clinicians randomized to disclosure of test results. Another alternative would be a trial that randomizes patients to a test strategy using conventional testing versus one that uses a new device. Finally, a less direct approach would be to link evidence on test performance to evidence on the effects of interventions (e.g., antianginals or percutaneous coronary intervention) in the population of interest. This final example is sometimes employed by the U.S. Preventive Services Task Force for evaluating screening tests. This less direct approach is more subject to bias due to the underlying assumptions that are inherent in creating such linkages.
To date, the existing literature among the target population for this report is limited to 10 studies of one body surface mapping device and 1 study of a signal averaging device. Additional research is needed to evaluate the utility of other ECG-based signal analysis devices among patients at low to intermediate risk of CAD in the evaluation of ACS or among subgroups of patients. ECG-based signal analysis devices might, for example, provide new and useful information for patients with left bundle branch block or other physiological processes that interfere with the ability of the standard ECG to detect acute ischemic heart disease. Patients who have a nondiagnostic or normal ECG at presentation but whose clinical presentation is suggestive of ischemic heart disease constitute an especially vulnerable population that may benefit from an add-on ECG-based test. Future research is needed to evaluate the role of ECG-based signal analysis devices for improving the ability of noninvasive, easily and quickly administered bedside tests to identify which patients are appropriate candidates for urgent treatment or further treatment.
Summary

Currently, a paucity of evidence exists about the utility of ECG-based signal analysis technologies as a diagnostic test among patients at low to intermediate risk for CAD who present in the outpatient setting with the chief complaint of chest pain or with symptoms suggestive of ACS. Most devices identified by our gray literature search did not appear to have published articles describing their performance among the target population for this report. The literature was not sufficient to determine if factors such as sex, body habitus, medications, and comorbid medical conditions affected test performance.

The limited available evidence demonstrates proof of concept, particularly for the PRIME ECG device, and it suggests that the sensitivity of BSM and signal averaging devices is higher compared with standard ECG for identifying patients with ACS who have either ischemic heart disease or CAD. However, this evidence is limited by the use of incomplete reference standards in the published studies, including elevated biomarkers for detecting acute ischemic heart disease.

Further research is needed to better describe the performance characteristics of these devices to determine in what circumstances, if any, these devices might precede, replace, or add to the standard ECG in test strategies to identify patients with clinically significant CAD in the patient population of interest. To fully assess the impact of these devices on the diagnostic strategies for patients with chest pain, test performance needs to be linked to clinically important outcomes through modeling or longitudinal studies.
References

Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>acute coronary syndrome</td>
</tr>
<tr>
<td>AHRQ</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>BSM</td>
<td>body surface mapping</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CCT</td>
<td>cardiac computed tomography</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CK-MB</td>
<td>creatine kinase-MB fraction</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare and Medicaid Services</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EPC</td>
<td>Evidence-based Practice Center</td>
</tr>
<tr>
<td>FDA</td>
<td>U.S. Food and Drug Administration</td>
</tr>
<tr>
<td>KQ</td>
<td>key question</td>
</tr>
<tr>
<td>LR+</td>
<td>positive likelihood ratio</td>
</tr>
<tr>
<td>LR-</td>
<td>negative likelihood ratio</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>non-ST elevation myocardial infarction</td>
</tr>
<tr>
<td>PCI</td>
<td>percutaneous coronary intervention</td>
</tr>
<tr>
<td>QUADAS</td>
<td>Quality Assessment of Diagnostic Accuracy Studies</td>
</tr>
<tr>
<td>SA</td>
<td>signal averaging</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST elevation myocardial infarction</td>
</tr>
<tr>
<td>VCG</td>
<td>vectorcardiography</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Appendix A: Gray Literature Search Strategy

Table A-1. Gray literature sources, search terms, and results (June 13, 2011)

<table>
<thead>
<tr>
<th>Source</th>
<th>Search terms</th>
<th>Restrictions</th>
<th>Number of Citations Identified</th>
<th>Unique Devices Identified</th>
</tr>
</thead>
</table>
| **General gray literature sources** | ("ECG" OR "electrocardiogram" OR "EKG") AND [("signal averaging" OR "signal averaged" OR "signal analysis" OR "spectral") OR ("body surface mapping") OR ("body surface potential mapping") OR ("body surface potential map") OR ("mathematical analysis")] NOT (3DMP, MCG, mFEMT)
"magnetocardiography" AND (ischemia OR ACS OR CAD) NOT CardioMag
(HF-QRS" OR "HF QRS" or "HFQRS" OR "cardiogoniometry") | • In the title of the page
• Published between May 1, 2009, and May 25, 2011
• English language
• Anywhere on the page
• Published between Jan 1, 2000, and Jun 8, 2011
• English language
• Anywhere on the page
• Published between Jan 1, 2000, and Jun 8, 2011
• English language | 689 | 112.2
Cardiag
Cardiag 128.1
Corazonix Predictor System
CarDx
CardioSoft, CardiaMax
Cardioscape 3.0
Visual 3Dx
Procadio 8
Cardiologic/Vascular explorer
Pagewriter Xli (Philips)
Megacart Recording Device (Siemens-Elema AB)
Lux-32/Lux-192
ActiveTwo System (Biosemi)
CMI-Magnetocardiograph (Magiscan)
MCG07 (MagiC)
83-SQUID MCG/MEG
31-channel biomagnetometer (Philips)
MC-6400 (Hitachi)
MAG12 (Marquette) |
| Google search | www.google.com | ("ECG" OR "electrocardiogram" OR "EKG") AND [("signal averaging" OR "signal averaged" OR "signal analysis" OR "spectral") OR ("body surface mapping") OR ("body surface potential mapping") OR ("body surface potential map") OR ("mathematical analysis")] NOT (3DMP, MCG, mFEMT)
"magnetocardiography" AND (ischemia OR ACS OR CAD) NOT CardioMag
(HF-QRS" OR "HF QRS" or "HFQRS" OR "cardiogoniometry") | • In the title of the page
• Published between May 1, 2009, and May 25, 2011
• English language
• Anywhere on the page
• Published between Jan 1, 2000, and Jun 8, 2011
• English language
• Anywhere on the page
• Published between Jan 1, 2000, and Jun 8, 2011
• English language | 988 | 128.1
Cardiag 128.1
Corazonix Predictor System
CarDx
CardioSoft, CardiaMax
Cardioscape 3.0
Visual 3Dx
Procadio 8
Cardiologic/Vascular explorer
Pagewriter Xli (Philips)
Megacart Recording Device (Siemens-Elema AB)
Lux-32/Lux-192
ActiveTwo System (Biosemi)
CMI-Magnetocardiograph (Magiscan)
MCG07 (MagiC)
83-SQUID MCG/MEG
31-channel biomagnetometer (Philips)
MC-6400 (Hitachi)
MAG12 (Marquette) |
| Food and Drug Administration (FDA) searched via: | http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm
Product codes: DPS and DRW
Posted between Jan 1, 2007, and May 25, 2011 | • Previous 20 years
• Word stemming on
• US Patents only | 71 | 2004
Easi ECG (Philips) (DRW)
PRIME ECG |
| Patents advanced search via: | www.freepatentsonline.com
("cardiac" AND "spectral") AND ("electrocardiograph" OR "electrocardiogram") | "body surface mapping" AND "ischemia" | 1057 | 0
0 |
<table>
<thead>
<tr>
<th>Source</th>
<th>Search terms</th>
<th>Restrictions</th>
<th>Number of Citations Identified</th>
<th>Unique Devices Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstracts from scientific meetings</td>
<td>“cardiac spectral” OR “body surface mapping” OR “signal averaging” OR “mathematical analysis” OR “magnetocardiography” OR “HF-QRS” OR “HF QRS” OR “HFQRS” OR “cardiogoniometry”</td>
<td>Abstract Archive tool searches across all AHA-sponsored scientific meetings through 2006</td>
<td>56</td>
<td>VCM 3000</td>
</tr>
<tr>
<td>American Heart Association (AHA)</td>
<td>“signal analysis” OR “signal averaged” OR “signal averaging” OR “body surface mapping” OR “mathematical analysis” OR “magnetocardiography” OR “HF-QRS” OR “HF QRS” OR “HFQRS” OR “cardiogoniometry”</td>
<td>• In title or abstract</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Online search of AHA journal Circulation</td>
<td>“signal analysis”</td>
<td>• Jul 2007 to May 2011</td>
<td>35</td>
<td>MAC 5000 (GE Medical)</td>
</tr>
<tr>
<td>via advanced search page:</td>
<td>via advanced search page:</td>
<td>• Conducted same search under all AHA journal titles and abstracts</td>
<td></td>
<td>CARTO system (Biosense-Webster): electroanatomical voltage mapping</td>
</tr>
<tr>
<td>American College of Cardiology (ACC):</td>
<td>“signal averaging” OR “signal averaged” OR “surface mapping” OR “body surface mapping” OR “magnetocardiography” OR “HF-QRS” OR “HF QRS” OR “HFQRS” OR “cardiogoniometry”</td>
<td>• In title or abstract • All JACC journals • Jul 2007 to May 2011</td>
<td>35</td>
<td>MAC 5000 (GE Medical)</td>
</tr>
<tr>
<td>Search page:</td>
<td>“mathematics analysis” OR “mathematical analysis” AND (ischemia OR CAD)</td>
<td></td>
<td></td>
<td>CARTO system (Biosense-Webster): electroanatomical voltage mapping</td>
</tr>
<tr>
<td>Heart Rhythm Society:</td>
<td>All of the words: (“electrocardiogram” AND (“signal averaging” OR “signal averaged”) OR “spectral analysis” OR “body surface mapping”) OR “magnetocardiography” OR “HF-QRS” OR “HF QRS” OR “HFQRS” OR “cardiogoniometry”</td>
<td>All abstract categories 2007 to 2011</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Search page:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search page:</td>
<td></td>
<td></td>
<td></td>
<td>BioSemi Mark-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nijegen 64-lead system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CardioMapp (Prucka Engineering Inc, Houston, TX)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FP-705 LP (Fukuda Denshi, Tokyo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 lead BSPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vectorcardiogram: Frank Lead System</td>
</tr>
<tr>
<td>Source</td>
<td>Search terms</td>
<td>Restrictions</td>
<td>Number of Citations Identified</td>
<td>Unique Devices Identified</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ClinicalTrials.gov:</td>
<td>“ischemia” AND [”electrocardiograph” OR “electrocardiogram”) OR “signal-averaged” OR “body surface mapping” OR “magnetocardiography” OR “HF-QRS” OR “HF QRS” OR “HFQRS” OR “cardiogoniometry”]</td>
<td>None</td>
<td>94</td>
<td>• HyperQ</td>
</tr>
<tr>
<td>Basic Search:</td>
<td></td>
<td>Searched May 26, 2011</td>
<td></td>
<td>• Micro T wave alternans detection devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Magnetocardiograph by CardioMag</td>
</tr>
</tbody>
</table>

Abbreviations: BSPM = body surface potential mapping
Table B-1. PubMed search (June 20, 2011)

<table>
<thead>
<tr>
<th>Set</th>
<th>Terms</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(“acute coronary syndrome”[MeSH Terms] OR “acute coronary syndrome”[All Fields]) OR (“myocardial ischemia”[MeSH Terms] OR “myocardial ischemia”[All Fields]) OR (“myocardium”[MeSH Terms] OR “myocardium”[All Fields] OR “myocardial”[All Fields]) AND (“ischaemia”[All Fields] OR “ischemia”[MeSH Terms] OR “ischemia”[All Fields]) OR (“coronary disease”[MeSH Terms] OR “coronary artery disease”[MeSH Terms]) OR “coronary artery disease”[All Fields])</td>
<td>344111</td>
</tr>
<tr>
<td>5</td>
<td>#1 AND #2 AND (#3 OR #4)</td>
<td>2331</td>
</tr>
<tr>
<td>6</td>
<td>#1 AND #2 AND (#3 OR #4) limits: English</td>
<td>1948</td>
</tr>
<tr>
<td>7</td>
<td>Animals[mh] NOT Humans[mh]</td>
<td>3572260</td>
</tr>
<tr>
<td>8</td>
<td>#6 NOT #7</td>
<td>1815</td>
</tr>
<tr>
<td>10</td>
<td>#1 AND #2 AND (#3 OR #4 OR #9) limits: English</td>
<td>2033</td>
</tr>
<tr>
<td>11</td>
<td>#10 NOT #7</td>
<td>1892</td>
</tr>
</tbody>
</table>
Table B-2. Embase search (June 20, 2011)

<table>
<thead>
<tr>
<th>Set</th>
<th>Terms</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>'acute coronary syndrome'/exp OR 'acute coronary syndrome' OR 'coronary artery disease'/exp OR 'coronary artery disease' OR 'silent myocardial ischemia'/exp OR 'silent myocardial ischemia' OR 'heart muscle ischemia'/exp OR 'heart muscle ischemia'</td>
<td>251,817</td>
</tr>
<tr>
<td>2</td>
<td>'electrocardiogram'/exp OR 'electrocardiogram' OR 'electrocardiography monitoring'/exp OR 'electrocardiography monitoring' OR 'ecg'/exp OR ecg OR 'ekg'/exp OR ekg OR 'electrocardiography'/exp OR electrocardiography</td>
<td>253,020</td>
</tr>
<tr>
<td>3</td>
<td>'cardiag 112.2':ab OR 'cardiag 128.1':ab OR 'lux 32':ab OR 'lux 192':ab OR 'parma 219':ab OR 'prime ekg':ab OR 'procardio 8':ab OR 'vcm 3000':ab OR 'visual ekg':ab OR 'cardio3kg':ab OR 'cardx':ab OR mfemt:ab OR 'multifunction-cardiogram':ab OR cardiamax:ab OR cardiosoft:ab OR hyperq:ab OR 'cardiologic explorer':ab OR 'vascular explorer':ab OR '31 channel biomagnetometer':ab OR '83 squid':ab OR 'cri 2409':ab OR 'cmi magnetocardiograph':ab OR 'mc 6400':ab OR 'squid magnetometer':ab OR 'fdx 6521':ab OR 'mac 5000':ab OR 'mag 12':ab OR 'model 1200':ab OR primeecg:ab OR 3dmp:ab OR 'arrhythmia research technology':ab OR 1200exp:ab OR 'fukuda denshi':ab OR 'mcg 7':ab</td>
<td>123</td>
</tr>
<tr>
<td>4</td>
<td>'spectral analysis':ti OR 'spectral analysis':ab</td>
<td>13,383</td>
</tr>
<tr>
<td>5</td>
<td>'signal averaged':ti OR 'signal averaging':ti OR 'signal analysis':ti OR 'signal processing':ti OR 'signal interpretation':ti OR 'body surface potential mapping':ti OR 'body surface map':ti OR 'body surface mapping':ti OR 'signal averaged':ab OR 'signal averaging':ab OR 'signal analysis':ab OR 'signal interpretation':ab OR 'body surface potential mapping':ab OR 'body surface mapping':ab OR 'signal processing':ab</td>
<td>9,203</td>
</tr>
<tr>
<td>6</td>
<td>'signal processing':exp</td>
<td>47,336</td>
</tr>
<tr>
<td>7</td>
<td>'magnetocardiography':ti OR 'cardiogoniometry':ti OR 'magnetocardiography':ab OR 'cardiogoniometry':ab OR 'high frequency qrs':ti OR 'high frequency qrs':ab OR 'magnetocardiography':exp</td>
<td>757</td>
</tr>
<tr>
<td>8</td>
<td>#3 OR #4 OR #5 OR #6 OR #7</td>
<td>66,594</td>
</tr>
<tr>
<td>9</td>
<td>#1 AND #2 AND #8</td>
<td>759</td>
</tr>
<tr>
<td>10</td>
<td>#1 AND #2 AND #8 AND [humans]/lim AND [english]/lim</td>
<td>530</td>
</tr>
<tr>
<td>11</td>
<td>#1 AND #2 AND #8 AND [humans]/lim AND [english]/lim AND [embase]/lim NOT [medline]/lim</td>
<td>74</td>
</tr>
</tbody>
</table>

Table B-3. Cochrane library search (June 20, 2011)

<table>
<thead>
<tr>
<th>Set</th>
<th>Terms</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>'acute coronary syndrome':ti,ab,kw OR (coronary artery disease):ti,ab,kw OR (myocardial ischemia):ti,ab,kw</td>
<td>10674</td>
</tr>
<tr>
<td>2</td>
<td>MeSH descriptor Acute Coronary Syndrome explode all trees</td>
<td>357</td>
</tr>
<tr>
<td>3</td>
<td>MeSH descriptor Coronary Artery Disease explode all trees</td>
<td>2039</td>
</tr>
<tr>
<td>4</td>
<td>MeSH descriptor Myocardial Ischemia explode all trees</td>
<td>19186</td>
</tr>
<tr>
<td>5</td>
<td>#1 OR #2 OR #3 OR #4</td>
<td>22003</td>
</tr>
<tr>
<td>6</td>
<td>(signal averaged):ti,ab,kw OR (signal averaging):ti,ab,kw OR (signal analysis):ti,ab,kw OR (signal processing):ti,ab,kw OR (signal interpretation):ti,ab,kw OR (body surface potential mapping):ti,ab,kw OR (body surface mapping):ti,ab,kw OR (signal processing):ab OR (signal interpretation):ab OR (body surface potential mapping):ab</td>
<td>2038</td>
</tr>
<tr>
<td>7</td>
<td>(spectral analysis):ti,ab,kw OR (body surface potential mapping):ti,ab,kw OR (body surface mapping):ti,ab,kw</td>
<td>834</td>
</tr>
<tr>
<td>8</td>
<td>"cardiag 112.2" OR "cardiag 128.1" OR "lux 32" OR "lux 192" OR "parma 219" OR "prime ekg" OR "procardio 8" OR "vcm 3000" OR "visual ekg" OR "cardio3kg" OR "cardx" OR mfemt OR "multifunction-cardiogram" OR cardiamax OR cardiosoft OR hyperq OR "cardiologic explorer" OR "vascular explorer" OR "31 channel biomagnetometer" OR "83 squid" OR "cri 2409" OR "cmi magnetocardiograph" OR "mc 6400" OR "squid magnetometer" OR "fdx 6521" OR "mac 5000" OR "mag 12" OR "model 1200" OR primeecg OR 3dmp OR "arrhythmia research technology" OR 1200exp OR "fukuda denshi": OR "mcg 7"</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>MeSH descriptor Signal Processing, Computer-Assisted explode all trees</td>
<td>753</td>
</tr>
<tr>
<td>10</td>
<td>#6 OR #7 OR #8 OR #9</td>
<td>2821</td>
</tr>
<tr>
<td>11</td>
<td>MeSH descriptor Electrocardiography explode all trees</td>
<td>6965</td>
</tr>
<tr>
<td>12</td>
<td>(ecg):ti,ab,kw OR (ekg):ti,ab,kw OR (electrocardiogram):ti,ab,kw OR (electrocardiography):ti,ab,kw</td>
<td>5378</td>
</tr>
<tr>
<td>Set</td>
<td>Terms</td>
<td>Results</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>13</td>
<td>#10 AND (#11 OR #12)</td>
<td>510</td>
</tr>
</tbody>
</table>
| 14 | #5 AND #10 AND (#11 OR #12)
** Cochrane reviews= 0 / other reviews=1 / Clinical Trials= 122 / economic evaluations= 1** | 124** |
| 15 | Limited to Cochrane Database of Systematic Reviews and Database of Abstracts of Reviews of Effects | 1 |
Appendix C: Inclusion and Exclusion Criteria

Inclusion Criteria

- Article published in English
- Full-length peer-reviewed publication; other types of publications (abstract only, etc.) may be considered for background or supplemental data
- Article presents original data
 - Secondary publications of data are acceptable (e.g., followup studies, subgroup analyses)
 - Exclude publications not meeting this criterion (e.g., letters, opinion pieces, reviews, meta-analyses). Mark any relevant items as useful for background/supplemental information
- Relevant device
 - Obtains and interprets electrical activity from the heart (ECG-based)
 - May utilize standard 12-lead information or have additional leads (e.g., body surface mapping)
 - Transforms/interprets the electrical signal in a novel way. Data transformation into spatial imaging or through advanced mathematics (e.g., Fast Fourier Transform) to produce new indexes that are relevant
 - Is claimed to be useful for diagnosing CAD, ACS, or detecting myocardial ischemia
 - Is commercially available in the U.S.
 - Has received FDA approval or clearance for marketing
- Implementation of the device in most medical facilities must be feasible
- Studies that diagnose CAD, ischemia, or ACS in patients who have suspected CAD
 - Can include diagnosing arrhythmias, but not SOLELY for diagnosing arrhythmias
- Study addresses target population (symptomatic patients at low to intermediate risk)
 - “Symptomatic” defined as any symptom that gives diagnosing physician suspicion of ACS/CAD/ischemia
 - Can include asymptomatic patients, but cannot address ONLY asymptomatic patients
 - If the population includes both symptomatic and asymptomatic patients, data for symptomatic patients must be reported separately
 - Can include high-risk patients with known acute MI, but cannot address ONLY high-risk patients
 - If the population includes high-risk and low-to-intermediate risk patients, data for low-to-intermediate risk patients must be reported separately
 - Can include studies that occur in the catheterization laboratory
- Relevant outcomes reported, including performance characteristics, effects on diagnostic or treatment decisions, or effects on patient outcomes of interest
Patient outcomes of interest includes catheterization laboratory findings, clinical outcomes of mortality, cardiac symptoms, function and functional status, and therapeutic interventions

- Only includes patients ≥ 18 years old, OR includes patients < 18 years old and presents the data for patients ≥ 18 years old separately
- Total sample size ≥ 20 patients

Exclusion Criteria

- Article is not published in English
- Not a full peer-reviewed publication (e.g., abstract only)
- Does not present original data
- Does not include a relevant device
- Does not address diagnosing CAD, ischemia, or ACS (exclude article if purpose of device use in the study is solely to detect arrhythmias)
- Does not address target population
- Does not report relevant outcomes
- Only includes patients < 18 years old OR includes mixed ages but does not report results for patients ≥ 18 years old separately
- Total sample size < 20 patients
Appendix D: Quality Assessment Criteria and Ratings

Quality Assessment of Diagnostic Accuracy Studies (QUADAS) Tool

For each question answer Yes, No, or Unclear. A user’s guide explaining each question and how to score your responses is available in the 2003 QUADAS article here: http://www.biomedcentral.com/1471-2288/3/25

1. Was the spectrum of patients representative of the patients who will receive the test in practice?
2. Were selection criteria clearly described?
3. Is the reference standard likely to correctly classify the target condition?
4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests?
5. Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?
6. Did patients receive the same reference standard regardless of the index test result?
7. Was the reference standard independent of the index test (i.e. the index test did not form part of the reference standard)?
8. Was the execution of the index test described in sufficient detail to permit replication of the test?
9. Was the execution of the reference standard described in sufficient detail to permit its replication?
10. Were the index test results interpreted without knowledge of the results of the reference standard?
11. Were the reference standard results interpreted without knowledge of the results of the index test?
12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?
13. Were uninterpretable/intermediate test results reported?
14. Were withdrawals from the study explained?

Additional quality criteria considered

15. Were patients selected as a random or consecutive sample?
16. Was the first author funded by the manufacturer of the device?
17. Does the abstractor have concerns about conflict of interest (COI)?

Please describe any other study quality assessments not covered in the above questions.
Overall Assessment of Study Quality

Assign the study an overall quality rating based on the following definitions:

Good (low risk of bias). No major features that risk biased results. RCTs are considered a high study design type, but studies that include consecutive patients representative of the intended sample for whom diagnostic uncertainty exists may also meet this standard. A “good” study avoids the multiple biases to which medical test studies are subject (e.g. use of an inadequate reference standard, verification bias), and key study features are clearly described, including the comparison groups, measurement of outcomes, and the characteristics of patients who failed to actual state (diagnostic or prognosis) verified.

Fair (moderate risk of bias). Susceptible to some bias, but flaws not sufficient to invalidate the results. The study does not meet all the criteria required for a rating of good quality, but no flaw is likely to cause major bias. The study may be missing information, making it difficult to assess limitations and potential problems.

Poor (high risk of bias). Significant flaws that imply biases of various types that may invalidate the results. The study has significant biases determined a priori to be major of “fatal” (i.e. likely to make the results either uninterpretable or invalid).

Quality Rating:

___ Good ___ Fair ___ Poor

If the study is rated as “Fair” or “Poor,” provide rationale for decision.

Table D-1 presents the summary rating and results for the overall quality rating, the 14 QUADAS questions, and the additional 3 questions.
Table D-1. Quality assessment for the 11 included studies (14 articles)

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Overall Quality Rating</th>
<th>Patient Representation</th>
<th>Selection Criteria</th>
<th>Reference Standard</th>
<th>Time Interval</th>
<th>Sample for Verification</th>
<th>Reference Test uniformly applied</th>
<th>Reference Test independently performed</th>
<th>Index Test Replicability</th>
<th>Reference Test Blinded Interpretation</th>
<th>Index Test Blinded Interpretation</th>
<th>Clinical Data Availability</th>
<th>Uninterpretable or Intermediate Test Reporting</th>
<th>Study Withdrawal Description</th>
<th>Random or Consecutive Sample</th>
<th>Author Funded by Manufacturer</th>
<th>Conflict of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carley et al., 2005</td>
<td>Fair</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Fermann et al., 2009</td>
<td>Fair</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Maynard et al., 2003</td>
<td>Fair</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>McClelland et al., 2003</td>
<td>Fair</td>
<td>Y</td>
<td>U</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>Y</td>
</tr>
<tr>
<td>Menown et al., 1998</td>
<td>Fair</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Menown et al., 2001</td>
<td>Fair</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Michaelides et al., 1999</td>
<td>Fair</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>O'Neil et al., 2010 and Hoekstra et al., 2009</td>
<td>Good</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ornato et al., 2009</td>
<td>Fair</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>Owens et al., 2008 and Owens et al., 2004</td>
<td>Fair</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Owens et al., 2006 and Navarro et al., 2003</td>
<td>Fair</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
</tr>
</tbody>
</table>

Abbreviations: N = No; Y = Yes; U = Unclear
Reference List of Included Studies

Michaelides AP, Dilaveris PE, Psomadaki ZD, et al. QRS prolongation on the signal-averaged electrocardiogram versus ST-segment changes on the 12-lead electrocardiogram: which is the most sensitive electrocardiographic marker of myocardial ischemia? Clin Cardiol 1999;22(6):403-8. 10376179

Appendix E: Excluded Studies

All studies listed below were reviewed in their full-text version and excluded. Following each reference, in italics, is the reason for exclusion. Reasons for exclusion signify only the usefulness of the articles for this study and are not intended as criticisms of the articles.

Afşar FA, Arif M, Yang J. Detection of ST segment deviation episodes in ECG using KLT with an ensemble neural classifier. Physiol Meas 2008;29(7):747-60. Exclude - Does not include a relevant device

Anonymous. ST-segment distortion in manual report mode of electrocardiographs. Health

Bakul G, Tiwary US. Automated risk identification of myocardial infarction using relative frequency band coefficient (RFBC) features from ECG. Open Biomedical Engineering Journal 2010;4(SPEC. ISSUE 2):217-222. Exclude - Does not include a relevant device

Bauernfeind T, Preda I, Szakolczai K, et al. Diagnostic value of the left atrial electrical potentials detected by body surface potential mapping in the prediction of coronary artery disease. Int J Cardiol 2010. Exclude - Does not present original data

Bigi MAB, Aslani A. SAECG in exercise test for prediction of diabetic coronary artery disease. Central European Journal of Medicine 2010;5(3):298-302. Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS

Brady WJ. Taking cardiac imaging to new dimensions: Body surface mapping. Consultant 2006;46(13):1450-1457. Exclude - Not a full peer-reviewed publication

Carley SD, Mackway-Jones K, Curzen N. Detection of evolving right ventricular infarct during right coronary artery stent insertion using PRIME ECG body surface mapping with colour map reconstruction. Resuscitation 2004;61(3):361-4. *Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS*

Chandrasekaran S, Hochman JS, Slater JN, et al. Relation between infarct artery patency at late angiography after acute myocardial infarction and signal-averaged electrocardiography. Am J Cardiol 1999;84(6):734-6, A8. *Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS*

De Ambroggi L, Bertoni T, Breghi ML, et al. Diagnostic value of body surface potential mapping in old anterior non-Q myocardial
Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS

Dehnavi ARM, Farahabadi I, Rabbani H, et al. Detection and classification of cardiac ischemia using vector cardiogram signal via neural network. Journal of Research in Medical Sciences 2011;16(2). Exclude - Does not include a relevant device

address target population, or address diagnosing CAD, ischemia, or ACS

Doniwa K, Kawaguchi T, Okajima M. Body surface potential mapping--its application to animal experiments and clinical examinations. Med Prog Technol 1987;12(1-2):117-22. Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS

Dranca L, Goni A, Illarramendi A. Real-time detection of transient cardiac ischemic episodes from ECG signals. Physiol Meas 2009;30(9):983-98. Exclude - Does not include a relevant device

Suppl: 157-65. Exclude - Does not include a relevant device

Emmot W, Vacek JL. Lack of reproducibility of frequency versus time domain signal-averaged electrocardiographic analyses and effects of lead polarity in coronary artery disease. Am J Cardiol 1991;68(9):913-7. Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS

Kornreich F, MacLeod RS, Lux RL. Supplemented standard 12-lead electrocardiogram for optimal diagnosis and reconstruction of significant body surface map patterns. J Electrocardiol 2008;41(3):251-6. **Exclude - Does not include a relevant device**

Kornreich F, Montague TJ, Rautaharju PM. Body surface potential mapping of ST segment changes in acute myocardial infarction. Implications for ECG enrollment criteria for thrombolytic therapy. Circulation 1993;87(3):773-82. **Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS**

Lim HK, Kwon H, Chung N, et al. Usefulness of magnetocardiogram to detect unstable angina pectoris and non-ST elevation myocardial...
infarction. Am J Cardiol 2009;103(4):448-54. Exclude - Does not include a relevant device

Menown IBA. Body surface mapping improves early identification of acute myocardial
infarction in patients with ST depression only on the initial 12-lead ECG. Cardiovascular Reviews
and Reports 2002;23(5):262-268. Exclude - Does not present original data

Montague TJ, Smith ER, Johnstone DE, et al. Temporal evolution of body surface map patterns
Does not address target population, or address diagnosing CAD, ischemia, or ACS

Montague TJ, Witkowski FX. The clinical utility of body surface potential mapping in coronary
artery disease. Am J Cardiol 1989;64(5):378-83. Exclude - Does not present original data

Montague TJ, Witkowski FX, Miller RM, et al. Exercise body surface potential mapping in
address target population, or addressing diagnosing CAD, ischemia, or ACS

magnetocardiography in patients with coronary artery disease. Coron Artery Dis 2004;15(3):155-
62. Exclude - Does not include a relevant device

dispersion as an independent predictor of the
presence of ischemia on myocardial perfusion
include a relevant device

Murray C, Alpert JS. Diagnosis of acute
myocardial infarction. Curr Opin Cardiol
original data

Myrianthefs MM, Ellestad MH, Startt-Selvester
RH, et al. Significance of signal-averaged P-
wave changes during exercise in patients with
coronary artery disease and correlation with
angiographic findings. Am J Cardiol

address target population, or address diagnosing
CAD, ischemia, or ACS

Nakai K, Izumoto H, Kawazoe K, et al. Three-
dimensional recovery time dispersion map by
64-channel magneto-cardiography may
demonstrate the location of a myocardial injury
and heterogeneity of repolarization. Int J
Cardiovasc Imaging 2006;22(3-4):573-80.
Exclude - Does not include a relevant device

Nakajima T, Kawakubo K, Toda I, et al. ST-T
isointegral analysis of exercise stress body
surface mapping for identifying ischemic areas
in patients with angina pectoris. Am Heart J
include a relevant device

detection of acute posterior myocardial infarction
using body surface mapping and SPECT
Exclude - Does not address target population, or
address diagnosing CAD, ischemia, or ACS

Nenonen J, Pesola K, Hanninen H, et al. Current-
density estimation of exercise-induced ischemia
in patients with multivessel coronary artery
Exclude - Does not include a relevant device

Nishiyama A, Suzuki A, Hayashi H, et al. Comparative study of QRST values from body
surface potential mapping, 12-lead ECGs, VCGs
in detecting inferior myocardial infarction, and
evaluating the severity of left ventricular wall
motion abnormalities in simulated left bundle
96. Exclude - Does not include a relevant device

Ohyu S, Okamoto Y, Kuriki S. Use of the
ventricular propagated excitation model in the
magnetocardiographic inverse problem for
reconstruction of electrophysiological properties.
Exclude - Does not include a relevant device

value of JT interval in magnetocardiography is
sensitive to coronary stenosis and improves soon
after coronary revascularization. Circ J
include a relevant device

O'Rourke RA, McCall D. Current usefulness of
the signal-averaged electrocardiogram. Current
Exclude - Not a full peer-reviewed publication

Immediate and day-to-day reproducibility of the signal-averaged electrocardiogram in patients with coronary artery disease. Pacing Clin Electrophysiol 1996;19(4 Pt 1):443-54. Exclude - Does not include a relevant device

Park JW, Hill PM, Chung N, et al.

Ragosta M, Pagley PR, DiMarco JP, et al. Relation between myocardial viability and abnormalities on the signal-averaged electrocardiogram in patients with low (<40%)
ejection fraction and coronary artery disease. Am J Cardiol 2000;85(4):405-10. *Exclude* - Does not address target population, or address diagnosing CAD, ischemia, or ACS

Rodriguez JD, De Los Santos L. Comparative analysis using the 80-lead body surface map and 12-lead ECG with exercise stress echocardiograms. Journal of Diagnostic Medical Sonography 2006;22(5):308-316. *Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS*

Rozenman Y, Rotzak R, Patterson RP. Detection of left ventricular systolic dysfunction using a newly developed, laptop based, impedance cardiographic index. International Journal of Cardiology 2011;149(2):248-249. *Exclude - Does not include a relevant device*

Russell DC. Continuous body surface potential mapping during the early hours of acute myocardial infarction. J Electrocardiol 1990;23 Suppl:207. *Exclude - Not a full peer-reviewed publication*

Sasaki R, Sugisawa K, Iwasaki T. Use of the body surface recovery time for detection of coronary artery disease. Jpn Heart J 1997;38(3):345-60. *Exclude - Does not include a relevant device*

Schlegel TT, Kulecz WB, DePalma JL, et al. Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of

Stilli D, Musso E, Macchi E, et al. Body surface potential mapping in ischemic patients with normal resting ECG. Can J Cardiol 1986;Suppl A:107A-112A. Exclude - Does not address target population, or address diagnosing CAD, ischemia, or ACS

Strobeck JE, Shen JT, Singh B, et al. Comparison of a two-lead, computerized, resting ECG signal analysis device, the MultiFunction-CardioGram or MCG (a.k.a. 3DMP), to quantitative coronary angiography for the detection of relevant coronary artery stenosis (>70%) - a meta-analysis of all published trials performed and analyzed in the US. Int J Med Sci 2009;6(4):143-55. Exclude - Does not present original data

Takala P, Hanninen H, Montonen J, et al. Heart rate adjustment of magnetic field map rotation in detection of myocardial ischemia in exercise
magnetocardiography. Basic Res Cardiol 2002;97(1):88-96. Exclude - Does not include a relevant device

Terada Y. Did the global myocardial ischemia produce an influence on high-frequency QRS potentials? Ann Thorac Surg 2005;80(4):1563-4; author reply 1564. Exclude - Not a full peer-reviewed publication

Wagner G, Pahlm O, Selvester R. Consideration of the 24-lead electrocardiogram to provide ST-elevation myocardial infarction equivalent

Wung SF, Drew B. Comparison of 18-lead ECG and selected body surface potential mapping leads in determining maximally deviated ST lead and efficacy in detecting acute myocardial ischemia during coronary occlusion. J Electrocardiol 1999;32 Suppl:30-7. **Exclude - Does not include a relevant device**

Wung SF, Lux RL, Drew BJ. Thoracic location of the lead with maximal ST-segment deviation during posterior and right ventricular ischemia: comparison of 18-lead ECG with 192 estimated body surface leads. J Electrocardiol 2000;33 Suppl:167-74. **Exclude - Does not include a relevant device**

