Home Health Prospective Payment System (HH-PPS)
Java code Design

Update for V3514
Date:
July 24, 2014
Table of Contents
Contents
L1 oo U od o] o ISP 1
JAVA LANGUAGE.e ettt ettt e e bt e e bt e e et e e st e e e bb e e e bn e et e e e b e e e tn e e erne e 2
Designing the real WOTI............ooiiiiiiee e e 2
D 1 U] o1 | OSSR 4
DAL OULPUL ...ttt e et e e s a e e bt e e s e e s abe e e s sb e e e bn e e aneeeas 5
L1614 o] o PO TP PRPRPRPTPP 6
1o] 0o PSR OP PSR OPURRRRS 6
R EIBNICES ...ttt bbb bR bbbttt 7
=] 0101 XT3 PR PRRTPP 8
Y Eo T Lo T 00 1= o | PP P PP OPRRUPRTPR 9
GENEIAL PUIPOSE ...ttt sttt ettt st e b et e bt st e s b e et e e beebeeneesbeeneenreas 9
Introduction

In 2008, 3M was tasked with providing a new version of the HH-PPS developed using
Java and providing public source code. This change replaces the previous pseudo code with well
structured, documented operational source code that can be directly inspected by the Home
Health community. This Java source code can be directly compiled without modification, run on
any machine supporting Java, and can be incorporated directly into other applications. Another
change is that reference data, such as diagnostic category, diagnosis codes, etc. are not embedded
into the Java source, but are separate examinable documents that are included during program
execution.

Finally, because Java is an Object Oriented language, the design and implementation of
the HH-PPS can better reflect the real world understanding, reducing the traditional gap between
software requirements and implementation. Java classes or interfaces pertaining to the HH-PPS
that are mentioned in this document are detailed in the “javadocs” folder within the installation
package. Please refer to the installation package for the exact location of that folder.

Java Language

There are many advantages to developing in Java as opposed to C-language. As
mentioned above, an advantage of Java is that it is an Object Oriented language that allows
developers to design applications that, when implemented, better reflect the real world that the
software is intended to represent. For example, if in the real world there is something called a
Diagnosis Code and that Code has certain properties (such as value and Diagnostic Category),
the software can directly represent that Code as a discrete component that both the customer and
the software developer can discuss more effectively.

Another advantage is that Java is mature enough to provide many pre-built tools that help
standardize program structure and documentation.

Probably the most popular advantage is that once Java is written, it can be run on any
operating system without change. This greatly reduces the long term maintenance of the
application.

Even with these advantages in mind, there is still the fact that software development is
part science and part art form. It is true that Object Oriented concepts can be applied to a
language like 'C', but it is very difficult and takes plenty of discipline on the part of the
developer. By using an Object Oriented language, many of these difficulties are reduced.
However, the “art form” is still present.

Designing the real world

The design goal of the HH-PPS is to reflect the real world. So, this version contains
several discrete objects (or components) that reflect real world items. Each object is part of a
segment of the system. During analysis of the Grouper 2.03 Pseudo code, the following
segments of the system emerged:

Data input — the input record required to effectively score

Data output — the scoring results

Validation — ensuring the input data is correct enough to properly score

Mapping (only used for V3110 thru VV3514) — this converts data specific to Oasis-C to its
Oasis-B equivalence in order to allow the scoring logic to remain equivalent with version v2409.
Historical Oasis-B related records do not undergo any mapping.

Scoring — provides the score based on the validated input data

References — tables of data that describe the ICD-9-Diagnosis Codes and their attributes

Reporting — provides a means to inspect the Grouper's scoring logic

Management — provides a means to control the internal operation of the Grouping
software

Pictorially, the design of the entire system is as follows:

Data Input

\ References

Management

\

Scoring

A 4

Reporting

Validation

Oasis-C Mapping

Data Output

Diagram: Overall system design
The design of these segments is described in more detail below.

The overall design of this version is based on the concept of prototyping (Java Interfaces
used to define how objects interact within the overall system but without providing the
implementation details.) Therefore, by defining the prototype, the functionality of the system is
described, but the implementation is left to specific modules. By separating the design from the
implementation, flexibility of implementation is increased. This flexibility comes into play as we
move forward with new versions. For example, there is an object within this system for
representing a Grouper that provides scoring for an input record, version name, etc. For each
version, another Grouper implementation will contain the logic specific for that version. The
implementations will be used the same way within the system, but each will have its own
separate scoring characteristics. Further, both versions are clearly separated, and can be tested
and updated without affecting the other.

In describing the design below, the methods for the prototype will provide the minimum
functionality for the system. However, implementation of the prototype may include additional
methods.

Note: Java interfaces (and classes) are organized into what are referred to as packages. The
prototype interfaces below are within the prototype package named:

com.mmm.cms.homehealth.proto

Note: The overall design also uses the following design patterns:
Factory
Observer

Strategy
Notifier

Data input

As the name implies, this is the data coming into the system and used for scoring.
Historically, the input data was a string structured in the OASIS record format (OASIS-B and
OASIS-C record formats containing 1448 characters). However, much of the information within
the OASIS record is unused in the scoring process. Therefore, this Grouper version introduces
the definition of a new record subset, the Home Health Record, to hold only the information
required for scoring. The Home Health Record can be extended to include all the OASIS record
information, but in terms of scoring it would not be necessary. Further, by separating the OASIS
record from the scoring record, this allows the scoring record to evolve/change without effecting
or relying on the OASIS record format. To support the conversion from the OASIS record to a
Home Health Record, the class com.mmm.cms.homehealth.io.OasisBody_B_RecordUtil and
com.mmm.cms.homehealth.io.OasisBody C_RecordUtil provide general conversion methods.
To make using these classes easier, an additional class,
com.mmm.cms.homehealth.io.OasisReaderFactory, provides the convenient mechanism to
determine which ...RecordUtil class to use (referred to as the record converter class).

Graphically, if using the OASIS record as a starting point, the process would be:

Data Input

OASIS-to-Home Health Record
Conversion — includes using a factory to
determine the appropriate converter.

Home
Health Record

Diagram: OASIS to Home Health Record conversion process.

Interfaces:

HomeHealthRecord_IF — This interface defines the information for validating
and scoring within the HH-PPS. This definition requires less information than what would
normally be found in a full Oasis-B record.

HomeHealthRecord _C_IF (new in v3110) — This interface builds on the
HomeHealthRecordIF and defines additional information for validating and scoring within the
HH-PPS. This additional information is specific to the Oasis-C validation.

OasisRecordConverterlF (new in v3110) — This interface is in the ...i0 package
because it is considered external to the HH-PPS requirements. Its purpose is to provide a generic
way of converting an Oasis record string into a HomeHealthRecord_IF implemented object.

Classes:

OasisReaderFactory (new v3110) — This class is in the ...io package because it is
considered external to the HH-PPS requirements. Its purpose is to provide a mechanism that
given an Oasis record string, either a B or C version, determines the appropriate conversion
module (i.e. OasisRecordConverterIF) to use in order to read the record in or write it out.

Data output

As the name implies, this is the data that comes out of the system, i.e. the resulting
scoring data. The scoring model contains 4 parts: HIPPS code, Grouper Version, Claim Oasis,
and Data Validity Flag. Each of these parts can be treated as discrete objects, but can also be
collected to represent the resulting score from the Grouper.

/

/
Scoring Results

HIPPS Code

Version String

Data Validity Flag

OASIS Treatment

/

Data Output

Diagram: Scoring Results and its parts; HIPPS Code, Version, Validity Flag, OASIS Treatment

Interfaces:
DataValidityFlaglF - Holds the data issues associated with a processed record,
and generates the Validity flag to use in the grouper output.

5

HIPPSCodelF - This represents the 5 character code used to report the HIPPS
code for the Grouper results.

TreatmentAuthorizationlF - This represents the 18 character code used to report
the Oasis Treatment and Authorization for the Grouper results.

Note: the version information comes from the HomeHealthGrouperlF which is not considered an
output specific item.

Validation

As the name implies, the interface in this section reviews the Home Health record to
determine which values correct, either individually or as a set of variables. This interface is
basically a read only interface that provides reporting of the validity of the record as well as
providing the overall validity flag.

Interfaces:

HomeHealthRecordValidator|F - Provides validation on the Oasis Record and
can be performed specific to the version. Once validated, this will indicate what items within the
record have issues or are invalid.

Scoring

This is the heart of the Grouping system with its main method being score(). This
interface takes a new approach by allowing the object to determine for itself if a record is
considered eligible for scoring. If the isValidForVersion() returns false then scoring the record
will be invalid, and the results are not guaranteed to be accurate.

Interfaces:

HomeHealthGrouperlF extends Namable, Describable, Initializable,
HomeHealthEventNotifierIF - Describes the high level class that will score the Home Health
Record. It manages all its own information about valid Diagnosis, Categories, V-codes, etc. It
should organize the information and the Validation and scoring models to perform the detailed
scoring process.

HomeHealthScoringModellF - This represents a single model for scoring a
HomeHealth record. Implementations of this class should not have to worry about validating the
record, and only focus on scoring it. A Reference to the Grouper that created this model at run-
time to ensure any reporting through the Notify Events methods can use the Grouper instead of
implementing an internal version of the notification process. In general, a scoring model has the
following phases for processing:

Initialize (once per object created)
Score a record
Pre process the record
Perform initial calculation
Re-evaluation the principal codes
Resolve Etiology / Manifestation Contention for points
Recalculate point for non Primary Codes

ScoringPointslF - Holds points accumulated by the Scoring Model. Itis up to
the model to determine how many scores should be held within.

ScoringResultsIF Holds the HIPPS, OASIS Treatment Authorization, Version
and Flag information accumulated during the Grouper scoring process.

References

References are parts of the application that are not directly involved in scoring but
provide information to the score modules, allowing them to perform effectively. For example,
the diagnosis codes and their associated Diagnostic Category would be a reference. Case Mix
Adjustment tables would also be a reference. The classes involved with these references are
designed in such a way that the data itself can actually be external to the application, allowing for
easy replacement. The design also does not restrict the location of the external data, however,
the implementation may impose such restrictions for deployment.

Interfaces:

CaseMixAdjustmentltemIF extends Identifiable, Namable,
PointsScoringEquationslF - This represents a single Casemix Adjustment set. It corresponds to a
single row in the original "Table 5 Casemix Adjustment Variables" table of the Pseudo 2.03
Tables spreadsheet.

Icd9CodelF extends Describable - Represents the basic information about an
ICD-9-Code including the code value, its category, and data not required for scoring but useful
for GUISs, such as the description.

Icd9DiagnosisCodel F extends lcd9CodelF, Clonable - Holds the information
specific to the Diagnosis codes (as opposed to a procedure code) that supports the scoring.

DiagnosticCategorylF extends Identifiable, Describable - Holds the ID and the
description for a Diagnostic Category.

PointsScoringEquationslF - This holds a single set of scoring values based on
the scoring equations for the combinations of:

Episode Timing (M0110) - UK or 01 as Early, and 02 as Later
Therapy Visits (M2200) - two main groups of 0-13, and 14+

These combine to create 4 separate values, or equations for scoring the case mix.

The "equations" are also referred to as a number in the following combination of
Episode Timing and Therapy Visits

Early Time:
0-13 Visits =1
14+ Visits =2
Later Time:
0-13 Visits = 3
14+ Visits =4

The values of each equation can be referred to within either by their name or by
their equation number. Note that the NRS scoring will only have one equation available.

Reporting

Reporting is used mainly during the debugging in order to ensure the scoring logic is
correct or for capturing the information to present in a user interface. Traditionally, this kind of
reporting is detrimental to the performance of the application during deployment. However,
object oriented design allows the use of a 3 part reporting mechanism that does not adversely
affect performance. The three parts are an event notifier, and event listener and the event itself.
The HomeHealthGrouperlIF and the HomeHealthRecordValidatorIF send the events to any object
that may be listening, such as the utility class, the HHEventConsole.

Interfaces:
HomeHealthEventIF - Describes the Home Health Event used for notify
programmatic listeners during the scoring process.

HomeHealthEventListenerlF - This defines a class the listens for events for the
Home Health grouper. These events are used instead of logging

HomeHealthEventNotifierlF - Defines a Notifier for Home Health Scoring
events.

Management

This section is for organizing the Grouper versions in a multi-version scoring system.
Each record type and assessment can only be scored by a single Grouper version. By using this
factory, the system can determine which Grouper is valid for a record by cycling through its list
of available Groupers and asking each if it can process the record. The first Grouper that replies
yes to that question will be the one the factory will select to process the record. While not
explicitly defined here, most implementations will allow the Grouper version object to be loaded
dynamically, which separates this class from being re-programmed when new Grouper versions
are added to the system.

Interfaces:
HomeHealthGrouperFactorylF extends Initializable - This defines a means for
selecting a Grouper based on the date range of the Home Health record.

General Purpose

General purpose, as the name implies, does not target a specific piece of the system. The
interfaces defined here are used throughout the system in order to provide a consistent way to
treat objects, which is helpful when debugging. The following interfaces are in the package:

com.mmm.cms.util

Interfaces:

Describable — defines an object having a getDescription() and setDescription()
method

Identifiable — defines an object having a getld() and setld()
Initializable — defines an object having an init() method

Namable — defines an object having a getName() and setName()

