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ABSTRACT 

A variety of time series models have been proposed as frameworks for producing long-term 

forecasts, such as predictions of national healthcare expenditures several decades into the future 

which is done by government agencies and academics to assess the future financial viability of 

this spending.  Selecting among candidate time series specifications presents an unattractive 

tradeoff.  Stationary models are generally uninformative about long-horizon forecasts since they 

merely set these forecasts equal to an unconditional mean that does not distinguish recent from 

earlier historical shocks when constructing projections.  Nonstationary time series models, on the 

other hand, allow for current trend deviations to affect future projection values, but they produce 

confidence intervals that explode as the projection horizon increases.  Thus, forecasters relying 

on time series models face a reality wherein their predictions are either precise but 

uninformative, or informative but imprecise.  To illustrate these challenges, the analysis 

estimates three time series specifications describing excess cost growth in healthcare spending 

and uses these estimates to compute long-term forecasts of expenditures and corresponding 

confidence bands.  These three models span the spectrum of candidate prototypes: a stationary 

(short memory) model, a nonstationary integrated model, and a fractionally integrated (long 

memory) model.  The empirical findings demonstrate that all specifications produce implausible 

long-term forecasts.   
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1 INTRODUCTION 

Between 1985 and 2010, per capita national health expenditures (NHE) rose 6.4 percent 

per year; between these same years, per capita gross domestic product (GDP) rose by 4 percent 

per year.  Whereas healthcare spending made up 10.5 percent of the economy in 1985, by 2010 

this figure had reached 17.9 percent.
1

1
 Calculations based on National Health Expenditures Account Data without any age-gender adjustment.   

  To characterize the trend of increasing health expenditures 

relative to GDP, academics, government agencies, and others often rely on the measure ―excess 

cost growth,‖ which notionally gauges the difference between the rate of healthcare spending 

growth and GDP growth.  Researchers use the concept of excess cost growth (ECG) not only to 

characterize historical spending trends, but also as a convenient metric for making and presenting 

projections of aggregate future healthcare spending.  ECG cost growth assumptions underlie 

long-run 75-year health spending projections produced by Centers for Medicare & Medicaid 

Services’ (CMS) Office of the Actuary (OACT) and the Congressional Budget Office (CBO).  

Forecasting values of ECG into the far-distant future is an exceedingly challenging task.  The 

purpose of this paper is to investigate the prospects of using time series model to forecast values 

of ECG and long-run healthcare expenditures. 

A variety of time series models have been proposed in the literature as frameworks for 

predicting healthcare costs over the long-term horizon.  The 2004 Technical Review Panel of the 

Medicare Trustees Reports recommended investigating and developing new approaches for 

modeling the long-term growth of NHE and Medicare expenditures, such as the use of time 

series models to create more realistic measures of forecasting uncertainty.  Academic research as 

well (e.g., Lee and Miller (2002)) has suggested integrating time series models into existing 

forecasting frameworks for healthcare costs to create confidence intervals surrounding forecast 

values.  This report catalogs the principal statistical structures of candidate time series models, 

presenting a succinct overview of their basic characteristics.  The time series frameworks 

considered here are non-structural in the sense that they exploit only past realizations of the 

dependent variable and error terms to predict future values; they ignore the possibilities of also 

incorporating other explanatory variables that could assist in improving forecasts.  The 

discussion principally focuses on depicting the core properties of time series specifications 

relevant in making long-run forecasts.  Whereas time series frameworks have proven to be useful 

in forecasting annual healthcare costs for relatively short forecasting horizons, the capability of 

these models to formulate refined predictions far into the distance future—such as the years 

falling into the latter part of the 75-years Trust Fund horizon—is problematic.  In particular, a 

forecaster faces one of two unattractive choices when specifying time series models to predict 

values far into the distant future: (i) Adopt a stationary specification that ignores history and 

merely sets all long-term forecasts equal to the same unconditional mean with fixed confidence 
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band that do not increase further out in time; or (ii) Select a nonstationary specification that 

produces sophisticated long-horizon predictions that depend on a time-series history, but with 

confidence intervals that grow so large as to make predictions virtually uninformative.  

To illustrate the challenges encountered in using conventional time series models to 

forecast healthcare costs in a long-horizon setting, this report presents estimates of three model 

variants that span the spectrum of candidate prototypes: a stationary (short memory) model, a 

nonstationary integrated model, and a fractionally integrated (long memory) model.  The analysis 

estimates specifications measuring growth in the excess cost ratio adjusted for changing age-

gender composition in the US population.  The estimates from these models are then used to 

compute long-term forecasts of health care expenditures, along with their confidence bands.  The 

empirical findings demonstrate that all specifications produce implausible long-term forecasts.     

This report is organized into four sections.  Section 2 briefly describes the forecasts of 

healthcare expenditures and excess cost growth produced by OACT and CBO, and provides 

pertinent background concerning the methods and assumptions that assist in explaining 

differences in their projection results.  Section 3 catalogs the classes of time series models 

available for creating long-term forecasts of healthcare expenditures, presenting a succinct 

overview of their basic characteristics and depicting the core properties of these different 

frameworks in making long-run projections.  Section 4 presents estimates for three prototype 

time series models describing excess cost growth in healthcare costs in the US, along with the 

forecasts and confidence intervals implied by these fitted models.  Finally, Section 5 presents 

concluding comments.  
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2 EXCESS COST GROWTH AND LONG-RUN FORECASTS OF 
HEALTHCARE EXPENDITURES  

To provide context for the projections of ECG produced by time series models discussed 

in later sections, this section describes the use of ECG in forecasting healthcare spending by 

OACT and CBO.  Section 2.1 first explains the concept of ECG, and Section 2.2 presents the 

most recent 75-year Medicare projections of OACT and CBO.  

2.1 Defining Excess Cost Growth 

Rather than directly forecasting healthcare spending levels, many government agencies 

and academics make projections of health expenditures using assumptions about the long-run 

ECG rate.  One computationally-usable formulation sets ECG equal to the difference in the rate 

of growth in per capita health expenditures and the rate of growth in per capita GDP, adjusted for 

population growth and changes in the age and gender composition of the population.  This 

construction of ECG for year t yields:2

2
 See the appendix in Caldis (2009). 

(2.1) 

 

1

1

1

t

t t
t

tt

t

GDP
ECG

GDPAgeGend

HealthExp

H

er

AgeGender

ealthExp 





 
 

     
   
 
 

where HealthExpt represents per capita healthcare expenditures in year t; the factors AgeGendert 

translate per capita spending into values that occurred or would be expected to occur in year t if 

expenditure patterns for each age/gender grouping were the same as observed in a reference year; 

and GDPt is the realized or expected per capita gross domestic product in year t.  Several sources 

exist for calculating the AgeGendert factors incorporated in ECG projections, such as the Social 

Security Administration’s (SSA) annual population forecasts.
3

3
 See Office of the Chief Actuary of the Social Security Administration (2012) and OASDI (2012). 

   

Drawing on lessons in the forecasting literature, one motivation for projecting ECG 

rather than NHE directly is that variability of ECG has been relatively more stable over time than 

NHE.  The standard deviation of ECG between 1960 and 2010 is 2.5 percent, whereas the 

standard deviation of NHE growth is 3.2 percent.
4

4
 Calculations based on National Health Expenditures Account Data without any age-sex adjustment.  ECG standard 

deviation is also lower than the standard deviation of the GDP growth rate (2.9 percent). 

 

  Thus, especially if the research question 

primarily focusses on forecasting NHE as a share of GDP rather than NHE levels, projecting 

ECG can offer a more attractive option than projecting NHE. 

 Inspection of (2.1) reveals that ECG is a characterization of the residual growth rate of 

health spending after controlling for spending change driven by changes in the age-gender mix of 
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the population.  Also, because the ECG rate is net of the GDP growth rate, the sign of the ECG 

rate indicates whether the aggregate health spending evolves as an increasing or decreasing share 

of GDP; in particular, if ECG is positive (negative), then the share is growing (shrinking).  

Instead of relationship (2.1), many official references express the ECG rate as a numerically-

equivalent multiplicative factor, sometimes called an xratio.
5

5
 Caldis, (2009) 

   

2.2 OACT and CBO Long-Run Medicare Projections 

Both OACT and CBO are tasked with making current-law projections of Medicare 

spending, which—as the name indicates—assume that all policies currently in place do not 

change over the entire forecast window.  The goal of these projections is to provide a baseline for 

evaluating the financial solvency of the program as it is presently configured.  A benefit of 

having such baselines is that, when Congress considers new policies, these agencies can project 

budgetary effects.  In making long-term Medicare projections, both OACT and CBO have relied, 

and continue to rely extensively, on assumptions about future ECG rates. 

OACT’s excess cost growth methods have evolved over the past dozen years, but 

continue to be built around assumptions regarding the long-run trajectory of health spending.  

Long-range projections up through the Trustees’ Report of 2005 were constructed using a single 

excess cost growth assumption of one percent above the projected rate of GDP growth (GDP+1), 

assumed to prevail for all parts of the U.S. health sector.
6

6
 Caldis (2009) 

  Starting with the Trustees Report of 

2006 and continuing through the 2011 report, the GDP+1 assumption was implemented in 

conjunction with a computable general equilibrium (CGE) model applied to produce a 

decelerating series of projected annual excess cost growth rates, with the present value of the 75-

year actuarial balance made equivalent to the simple GDP+1 projection.
7

7
 Caldis (2009) 

  A decelerating series 

of ECG was regarded as a more plausible characterization of transition to a long-run steady state 

of roughly GDP+0, the ultimate long-range assumption of the Medicare Trustees.  In response to 

recommendations of the 2010-2011 Medicare Technical Panel, in 2012 the Trustees dispensed 

with the CGE model and started using a Factors Contributing to Growth Model in conjunction 

with ECG assumptions to produce the long-range projections appearing in the 2012 Report of the 

Medicare Trustees.
8

8
 Heffler, Caldis, Smith (2012) 

     

CBO has traditionally implemented its long-range projections by adopting different cost 

growth rate assumptions for the three segments of the U.S. health sector: Medicare, Medicaid, 

and the rest of the healthcare market.  Historical time series data are used to compute an initial 

long-range cost growth rate, and rates of deceleration in cost growth are then assumed for each 
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segment of the U.S. health sector.  In its 2012 long-range projections CBO assumed that 

Medicare will continue to grow more rapidly than Medicaid and the rest of the U.S. health sector 

in the long-run, with ECG in Medicare only decelerating to GDP+1 by the 75
th

 projection year.  

This higher rate of Medicare cost growth maintained by CBO leads to a divergence in the 

current-law projections reported by OACT and CBO for Medicare in the very long run. 

Figure 2.1 displays OACT’s and CBO’s most recent long-run Medicare spending 

projections.
9

9
 Data from the figure come from two sources: (i) CBO LBTO supplemental data 2012; and (ii) and OACT 

memoranda from Shatto and Clemens 2012.  The OACT data are smoothed across years.  ECG assumptions used by 

OACT and CBO apply only to long-range time horizons. For example, OACT produces 10-year bottom-up short-

range projections, a set of intermediate horizon projections for years 11 through 24 that transition from short-range 

to long-range rates, and long-range methods are implemented for years 25 through 75 of the long-range projection 

horizon.  CBO projections also distinguish between short-range and long-range methods. 

  Although OACT’s current-law Medicare projection is similar to CBO’s over the 

medium-term, its long-run Medicare spending projections fall well below those of CBO.  In 

2035, OACT’s current projection estimates Medicare spending will make up 5.6 percent of the 

economy; CBO’s estimate in that same year is 5.7 percent.  By 2080, however, the projections 

diverge sharply.  OACT projects that Medicare spending will comprise 6.7 percent of GDP, 

whereas CBO’s baseline projection estimates that Medicare expenses will be 11.0 percent of 

GDP.   

Figure 2.1: OACT and CBO Projections of Medicare Spending for 2010-2085 

In addition to these current-law projections, both organizations also build alternative 

projections relying on more realistic assumptions.  OACT researchers acknowledge that their 
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current-law projections are ―clearly unrealistic‖ with respect to certain assumptions, especially 

physician expenditures.
10

10
 See Shatto and Clemens 2012, p.1. 

   OACT’s alternative model differs from its extended baseline scenario 

along three dimensions.  The alternative model assumes that (i) scheduled decreases to physician 

payments (i.e., Sustainable Growth Rate (SGR) reductions) do not occur, (ii) reductions to 

various prospective payment system updates based on economy-wide productivity are assumed 

to phase out and end by 2034, and (iii) the Independent Payment Advisory Board (IPAB) 

requirements are not implemented.
11

11
 See Shatto and Clemens 2012. 

  CBO adopts a similar set of assumptions for their extended 

alternative fiscal projection.  In particular, the CBO long-run alternative projection assumes that 

―ongoing reductions in payment updates for most providers in the fee-for-service program, the 

Sustainable Growth Rate mechanism for payment rates for physicians, and the IPAB...‖ will not 

continue into the future.
12

12
 See CBO LTBO 2012 

  Under these alternative sets of assumptions, OACT projects that 

Medicare spending will be 10.0 percent of the economy by 2080 and CBO projects that Medicare 

spending will make up 12.3 percent of GDP in that same year.  Figure 2.1 displays these 

alternative projections along with the current-law forecasts. 
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3 PROPERTIES OF FORECASTS USING TIME SERIES MODELS  

Using time series models to forecast ECG offers a natural alternative to the deterministic 

approaches currently used by OACT and CBO.  The following discussion catalogs the principal 

statistical structures of these time series models, presenting a succinct overview of their basic 

characteristics.  The discussion primarily focuses on depicting the core properties of these 

different frameworks in making long- run forecasts.  All prominent time series models possess a 

familiar moving average (MA) representation.  Indeed, translating the different time series 

structures into this common representation offers a rich framework for discussing and comparing 

the properties of forecasts across models.  This is the approach adopted throughout this report. 

The following discussion describes the framework underlying the forecasts produced by 

time series models.  Section 3.1 presents the core MA representation of time series models, and 

Section 3.2 summarizes the measures of uncertainty implied for forecasts produced by 

alternative structures of this MA process.  Section 3.3 presents the MA structures for all the 

primary specifications of time series processes found in the literature.  Section 3.4 identifies the 

unattractive tradeoffs inherent in selecting time series specifications linked to long-horizon 

forecasting, and, finally, Section 3.4 illustrates the numerical relevance of these tradeoffs.  

3.1 Predicting Future Values Based on MA Models 

To fix ideas, let             
,

ˆ
T h TX 

denote a forecast of           
T hX 

that is made at time T.  The optimal 

forecast depends on the loss function.  With the mean square error loss function, the most 

popular choice, the optimal forecast is the conditional expectation,  ( )T T hE X 
                , and the expected 

prediction loss is directly given by the prediction error variance.  With a more complex loss 

function, the optimal forecast will depend on additional features of the distribution of  

 ( )T h T T hX E X  n the widespread popularity of quadratic loss functions, the following 

 
T hX discussion focuses on identifying how various time series model decompose          into the 

conditional mean,  ( )T T hE X 

.  Give

                and the difference  ( )T h T T hX E X                              .  For simplicity, we refer to the 

former as the forecast and the latter as the prediction error, even though this is only optimal 

under mean square error loss. 

To develop multi-period-ahead forecasts of Xt assuming it follows a time series model, a 

wide variety of time series can be expressed as an infinite order moving-average process (i.e., 

MA(∞)):
 
  

 

(3.1)          
 

0

t t i t i t

i

tX    






   
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where  
t is a deterministic term,                                                                          

1 2 1( | , ,...) ( )t t t t t t t tX E X X X X E X       with   { }t being a 

white noise process (i.e., the  𝜀𝑡 ′𝑠 are serially uncorrelated errors), and the random variable  𝜐𝑡  

measures the accumulative influence of idiosyncratic errors.  The Wold representation theorem 

states that any covariance stationary process can be written as a MA(∞) process in the form of 

(3.1),
13

13
 Abstracting from technicalities having to do with ergodicity. 

 and Beveridge-Nelson (1981) show that integrated processes of order one (i.e., models 

with unit roots) have analogous MA representations.
14

14
 The Beveridge-Nelson representation can be written in the form:   

1

0 0

t

t t t jj jX X  



  

  Using MA representation (3.1), the 

expected value of   
T hX 

given the history   
1T TX X …  is:   

(3.2) 
 

1
ˆ ( ) ( ) ( )T h T T T h T h T T T h j T h j

j h

X E X E X X X … E X  


       



       

This is the natural h-period ahead forecast, as it minimizes the variance of the prediction error 

                                (3.3)    
 1

0

h

j T h j

j

 


 



 . 

3.2 Measuring Uncertainty of Forecasts  

             

 The principal difference in the various formulations of time series models concerns 

whether the coefficients   
k in (3.1) converge to zero as k increases (i.e., 𝜓𝑘 → 0  as  k ) and 

the rate at which such convergence occurs.  If 𝜓𝑘 → 0 as  h sufficiently fast, then the 

process is stationary.  If not, the time series process is nonstationary.  Two prototype 

specifications of a time series process illustrate the factors governing the rate of convergence of 

the   k     coefficients.   

                                                           

One prototype takes the form  

                              (3.4)      (1 − 𝜑𝐿) 𝜐𝑡  =  𝜀𝑡    . 

             Inverting   (1 )L yields  

   
 1 2 2(1 ) 1 j

jL L L L        
, 

which permits expressing (3.4) as  

                                                  (3.5)    
 

0
(1 )t t h j t jj

L    


 
   . 

This relationship corresponds to a MA(∞) process with coefficients  k      decaying (growing) at an 

exponential rate      φ j .  When         φ <1 , these coefficients decay and the process is stationary, and 

when        φ ≥1 , the process is nonstationary.  More generally, this prototype captures the essential 

features of the familiar finite-order autoregressive moving-average (ARMA) model commonly 
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                used in the literature.  The quantity  (1 − 𝜑𝐿)  in (3.5) corresponds to the autoregressive (AR) 

component of the model.  An ARMA specification falls into the short-term memory class and is 

stationary when all the roots of its AR component are less than one in absolute value; the ARMA 

model falls into the integrated class and is nonstationary when any of the roots of its 

autoregressive component equal one in value and when the others are less than or equal to one; 

and the model is also nonstationary when any of its autoregressive roots exceed one.  

A second prominent prototype specification of a time series process takes the form  

(3.6)       (1 − 𝐿)𝑑 𝜐𝑡  =  𝜀𝑡  

                 

              

where L is the ―lag‖ operator (i.e.,  1t tLX X  ), and d represents the ―order of integration.‖  

Inverting   (1 )dL yields 
15

15
 The inverse of  (1 )dL              is obtained from the Taylor expansion of  ( ) (1 )

d
f z z


          which yields                                                                           

       21

2
( ) 1 ( 1)f z d z d d z      . 

 

   
 21
(1 ) 1 ( 1)

2

d j

jL d L d d L L        , 

which implies a rewriting of (3.6) given by   

(3.7)      
0

(1 ) d

t t h j t jj
L   



 
   . 

This relationship corresponds to a MA(∞) process with coefficients   k      decaying (growing) at a 

geometric rate; in particular, for large integers j,   

     

                                                                                        

                                                  

                         1( 1)d

j j   . 

For d = 0, relationship (3.7) represents a ―short-memory‖ process; for 0 < d < 1; this relationship 

corresponds to what is known in the literature as a ―long-memory‖ ( or ―fractionally integrated‖) 

process; and for d = 1, relationship (3.7) becomes an integrated process (i.e., a process with unit 

roots).  Time series (3.6) is stationary when  1
2

d           ; and it is nonstationary when   1
2

d  .    

To characterize properties of the uncertainty in forecasting a h-period ahead value based 

on the MA(∞) process (3.1), the future value of 

        

      measured h 𝜐𝑡   periods ahead equals:  

(3.8)      

𝜐𝑡+ℎ =   𝜓𝑗 𝜀𝑡+ℎ−𝑗

∞

𝑗=0

                                             

=   𝜓𝑗 𝜀𝑡+ℎ−𝑗

h−1

𝑗=0

+   𝜓𝑗 𝜀𝑡+ℎ−𝑗

∞

𝑗=ℎ

  .
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The minimum-variance unbiased prediction of  𝜐𝑡+ℎ         conditioning on information available in 

period t equals:
 
 

(3.9)     𝐸𝑡(𝜐𝑡+ℎ) =  𝜓𝑗 𝜀𝑡+ℎ−𝑗

∞

𝑗=ℎ

                                             . 

Substituting (3.9) into (3.8) produces 

 (3.10)   𝜐𝑡+ℎ =       𝐸𝑡(𝜐𝑡+ℎ)            
Forecast

  +       𝜓𝑗
h−1

j=0
𝜀𝑡+ℎ−𝑗   

           
Forecast  Error

                                                                                   . 

Consequently, the variance of the forecast error becomes:
 
 

 (3.11)    
 1

2 2

0

h

j

j

 




                               . 

Clearly one sees that the properties of this variance of the forecast depend directly on features of 

the coefficients  
k       as k increases.  For a stationary process, this variance converges to a constant 

as h grows large (i.e., as  h           ), which requires  

(3.12)     
 

2

1

j

j






                      . 

For a nonstationary process, this variance grows steadily with the length of the forecast horizon h 

with the rate of increase related to how large the coefficients  k      become as k increases.  The 

variance expression in (3.12) is used in the construction of statistically-derived confidence 

intervals for forecasts.  

3.3 Classifications of Familiar Time Series Processes as MA Models 

All major specifications of time-series processes throughout the literature have moving 

average representations with structures characterized by one of the two prototype formulations 

described above.  The following discussion categorizes the most popular specifications and 

shows their MA forms to exhibit their forecasting properties.  The analysis begins with stationary 

short- and long-memory models, and then turns to several nonstationary variants.   

3.3.1 Stationary Short-Memory Processes  

 The workhorse of times series forecasting is the autoregressive moving average model, a 

framework known as the Box-Jenkins methodology.  An ARMA(p,q) model takes the form 

 (3.13)     
1 1 1 1t t p t p t t q t qX X X                 

where the univariate time series, Xt, depends linearly on its own recent past as well as the 

innovation (shock)  t   , and its recent past.  An ARMA process has a stationary representation if 

all solutions to  

 2

1 2( ) 1 0p

pz z z z             
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are greater than one in absolute value.   

 Any stationary ARMA process can be expressed as an infinite order moving average 

process of the form (3.1), where its MA coefficients can be derived recursively from the Yule-

Walker equations: 

      

 

 

 

 

 
0

1 1 0 1

2 1 1 2 0 2

1 1

1

k k p k p k



  

   

     



 

  

   

with   0k            for k > q. Solving these equations reveals that   
k    is of the same order as   k        where  

 

       

is the solution to   ( ) 0z               with the largest absolute value; consequently,      k

k              for some

 1 

             

.  This exponential rate of decay is quite rapid.    

 For this specification of the MA process, the long-term forecast   ˆ
T h TX            quickly converges 

to  ( )T hE X                 as the prediction horizon, h, reaches even modest values, and the variance of the  

associated prediction error approximately equals 
 

2 2

0

j

j

 




               .  Since these quantities represent the  

unconditional mean and variance of the Xt time series process, the particular specification of the 

ARMA model and its parameters describing dynamics have little influence on either the long-

term forecast or its variance.   

3.3.2 Adding a GARCH Structure  

A GARCH model introduces time variation in the conditional variance  2

1 1( )T T Tvar                              . 

For instance, a GARCH(1,1) model assumes  

(3.14)  2 2 2

1 1t t t                                                                                  . 

This in turn implies the following AR(1) structure for the conditional variance, 

                                                                                        2 2 2 2

1 1 1( ) with ( )t t t t t t                 . 

Also,  
1( ) 0t tE                      . 

 The primary purpose of proposing a GARCH framework is to capture volatility dynamics 

in the short run.  In financial time series, empirical estimates often suggest  1                 , which 

indicates highly persistent volatility—resembling a near-unit root process. 

 However, a GARCH model does not affect the conditional mean 𝐸𝑇(𝑋𝑇+ℎ)                  .  Moreover, 

volatility dynamics average out in the long-run—assuming   1                    so that  2

1
( )tE



 


 
                       .  So, 

the long-term prediction error variance,                  ( )T T hvar X 
 , is not affected either. 
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3.3.3 Stationary Long-Memory Processes  

                  

   

 A prominent category of long-memory models is known as fractionally integrated 

processes.  A simple representation of such process takes the form of model (3.6) with the 

difference operator d in the range 0 < d < 1.   A fractionally integrated process with   1
2

0 d 

is stationary with coefficients,  ,  
i converging to zero at a geometric rate that is slower than 

exponential decay associated with stationary short-memory processes.  Consequently, 

fractionally integrated processes are more dependent on      ’s in the distant past, than is the case 

for ARMA processes.  This motivates their designation as long memory processes. 

 Using the above results describing the second prototype time series model, the forecast of 

a fractionally integrated process can be expressed in a MA representation given by 

      

 
0

ˆ
T h T h j T jj

X  


   


                      where the coefficients  1( 1)d

j j     for large integers j.  The key difference between this 

formulation and the one obtained for the autoregressive processes is that the prediction error 

variance will tend to be larger for the long-memory models.  In particular, 

    

 1 1
2 2 2 2( 1)

,

0 0

ˆ( ) ( 1)
h h

d

T h T h T j

j j

var X X j   
 



 

 

    

         This variance remains finite as               h when  1
2

d   .  While it takes longer for this expression to 

attain the value of the unconditional variance of Xt than occurs for short-memory processes, it is 

still true that this convergence takes place fairly rapidly.  The implication is again that the 

predictive distribution for a h-periods ahead forecasts reduces to the stationary distribution when 

h is large.  

3.3.4 Nonstationary Long-Memory Processes  

              

   

            

        

A fractionally integrated process with the difference operator d in the range  1
2

1d  is 

nonstationary.  In this instance, the coefficients,  
i  , in the MA representation of this process 

either do not converge to zero or converge at a sufficiently slow rate so that the variance grows 

continually as h increases and explodes as  h.  In fact, the width of a confidence interval for 

a forecast will expand at the rate ℎ
𝑑−

1
2 , where h is the forecasting horizon.  This follows from the 

known result 

  

 1
1

12

0
1

[ ( )] (1 ) ( )
hd

d

T j T j

j

h X E X d C u dW s




 



     

where W(s) is a Brownian motion, and C is a constant. The integral on the right hand side is 

known as a functional Brownian motion of type II.  
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3.3.5 Integrated Processes  

 Integrated models easily constitute the most popular statistical apparatus for describing 

processes that exhibit persistence in the long run.  These models encompass autoregressive 

structures with unit roots.  Referring to the autoregressive function   ( )z       given by (3.2), 

integrated structures are those for which the solution to the equation   (1) 0              has one or more 

unit root.  One finds several variants of unit root processes, each characterized by their order of 

integration.   

By far, the most-studied and relevant type of unit root processes are those integrated of 

order one, designated as   (1)tX I              .  The I(1) processes are characterized by the requirement that 

the difference, ∆𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1                             , has a MA(∞) structure with exponentially decaying weights 

and  
0

0jj





                     .  One can express such processes as  

(3.15)      
 

0

1

( )
t

t s t

s

X c c L Y 


  

where  
0 0 1( )Y f X X …                                  is an initial value and   0 1 1( ) t t tc L c c                                              is a time-invariant 

MA(∞) process.  Expression (3.15) constitutes the Beveridge-Nelson (BN) representation of the 

process.  It is the initial value, Y0 , and random walk component,  
1

t

ss


            , that make this 

representation distinctly different from the stationary MA(∞) representation obtained previously.  

 The conditional mean X of   T hX          is 

(3.16)     
 

0
ˆ

T h T j T h j

j h

X c Y


   



                                         ; 

and the prediction error is 

    

 

 

1

,

1 0

1

0

ˆ
h h

T h T h T T j j T h j

j j

h

T h j

j
j

X X c c

c c

 





    

 



 



  

 

 


. 

Since cj → ∞                at exponential rate, the random walk term, 𝑐 𝜀𝑇+𝑗

ℎ

𝑗−1
                       , will be the dominating 

factor in long-horizon forecasts.  For large h, the prediction error variance becomes 

                                                   2 2ˆ( )T h T h Tvar X X hc     . 

So, unit root processes have the unattractive feature that the prediction error variance increases 

linearly with the horizon.  

 The following example presents a unit root process and provides its BN representation.  

Consider the AR(2) process  



 

 h
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1 2

1 1

2 2
t t t tX X X     

Since ∆𝑋𝑡 = −
1

2
∆𝑋𝑡−1 + 𝜀𝑡                                       , we immediately see that the MA(∞)  representation for   

tX       takes 

the form: 

       
  1

20

i

t t ii
X 




   . 

Further, it can be shown that 

 
1

1

2 1
( ) [2 ]

3 3

T h

T h t T h T T

t T

X C L X X 


  

 

                                                                           , 

with 𝑐0 =
1

3
              ,                𝑐1 = −

1

6
 ,               , 𝑐2 =

1

12
 and                               1

1 22
( )k k kc c c   for k ≥ 2.  Thus,   

 

 
1 1 1

1

2 1 1
( )

3 3 6

T h

T h T T h t T h T h h T

t T

X E X c   
  

 
       
 
  

      

Computing the variance of this expression reveals  2

1
( )

T h

tt T
var h  



 
                                     , and   

 1 1
1 1 13 6

( )T h T h h Tvar c K         

                                                   

(a constant) as               .  It is clear that the random  

walk term (often called the stochastic trend),                      
2

3
 𝜀𝑡

𝑇+ℎ

𝑡=𝑇+1
 , constitutes the dominating factor in 

the prediction errors. 

3.3.6 Exponential Smoothing 

 Finally, a simple and popular method for forecasting is exponential smoothing where the 

prediction of   1TX         at times T is an exponentially weighted average of past observations 

 

 
1

0

ˆ (1 ) j

T jT T

j

XX  


 



  

for some 0 ≤     < 1.  The distant past is heavily discounting when      is close to zero, and 

influential when      is close to one.  An elegant feature of exponential smoothing is that its 

predictions are simply updated by the recursion  

                                              
1 1

ˆ ˆ (1 )T T T T TX X X       . 

This exponential smoothing structure implicitly assumes that Xt follows a ARMA(1,1) process 

with a unit root in the autoregressive component process.  More specifically,  

 
 

1 1t t t tX X      

This is also called a IMA(1) model.   
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 Another label for this process is ―local level model.‖  This model carries the 

interpretation that Xt is a noisy observation of a latent process, Yt ,  where Yt is a simple random 

walk.  The formulation capturing these relationships is given by: 

 

1

t t t

t t t

X Y

Y Y





 

 
 

           where  
t and  

t are both iid and mutually independent.  

3.4 Unattractive Tradeoffs in the Selection of Time Series Models  

    

         

          

        

Inspection of formulas (3.2), (3.11) and (3.12) reveals an inherent tradeoff in the 

properties of the long-run forecasts produced by MA process (3.1).  According to (3.2), the 

extent to which history of the time series at time T matters in the long-term predictions   ˆ
T h TX  

depends on the magnitudes of the    ψk’s   for values of k above h.  If the ψk’s    decay rapidly, then 

shocks in Xt prior to T dissipate quickly and are highly discounted in  ˆ
T h TX  

.  In contrast, if the 

ψk’s persist and either converge to zero very slowly or not at all, then shocks in Xt prior to T can  

influence values of the forecasts  ˆ
T h TX  

            far into the future.    

       

     

At the same time, expression (3.11) for the variance of forecasts shows that the size of 

confidence intervals for future predictions also directly depends on the convergence rate of the 

ψk’s .  If these coefficients converge quickly to zero, then confidence intervals for forecasts are 

small and bounded.  Alternatively, if the ψk’s     decay slowly or not at all, then the prediction 

variance is large and may not even be bounded.    

       

Consequently, a forecaster faces the following unattractive choices when using time 

series models to predict values far into the distant future.  A forecaster could adopt a 

specification featuring a fast decay of the ψk’s  .  For such a model, the unconditional distribution 

holds all the available information about Xt in the distant future.  The implied long-term 

prediction is the unconditional mean of the process, and the confidence interval is fully 

determined by the unconditional variance of the process.  Knowledge about the dynamics of Xt is 

only useful to the extent that it can help characterize the unconditional distribution, when the 

objective is to make long horizon predictions (i.e., when h is large). 

      

Alternatively, a forecaster could take up a specification featuring either a slow decay or 

nonconvergence of the ψk’s  .  Such specifications always arise for nonstationary processes.  The 

resulting models produce sophisticated long-horizon predictions in the sense that these forecasts 

depend on the history of the time series process along with the dynamic properties of the model.  

The forecasts are not merely the unconditional mean of the distribution.  However, the 

confidence intervals for these long-term projections can be quite large and steadily grow the 
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longer the horizon. The implication for these models is that little can be said about the distant 

future, because the uncertainty associated with any forecast will be large when h is large. 

This tradeoff leaves unappealing options for using standard time series models to 

formulate forecasts and corresponding confidence intervals when faced with the problem of 

predicting healthcare costs several or many decades ahead.  Consider the forecasting problem of 

predicting h periods ahead in the situation where h is large.  If a researcher relies on a stationary 

model, then long-run forecasts merely converge to an unconditional distribution with a constant 

variance (regardless of the length of the horizon) and no influence of current values on forecasts.  

This is true irrespective of whether one considers short or long memory models.  In such 

instances, the particular specification of the time series for the idiosyncratic errors is essentially 

irrelevant for long-term forecasts.   Alternatively, if a researcher adopts a nonstationary model, 

the properties of its long-run forecasts depend on its order of integration, designated by d in the 

first prototype model introduced above.  Higher d means that current and recent history figure 

more into long-run forecasts, but with the confidence intervals for predictions that grow at the 

rate  
1
2

d
h


      .  Thus, the more that current values in a nonstationary models say about forecasts in the 

long-term future, the more uncertainty that the model associates with these forecast and this 

uncertainty become quite large the further out one projects outcomes.  

At first impression, one might surmise that these challenges can be avoided by predicting 

the average growth rate of a time series rather than its future levels.  However, the statistical 

properties associated with predicting average growth fully carry over to the problem of 

forecasting levels.  These two approaches are in fact equivalent since one can readily convert one 

forecast into the other, and the same is true for the confidence intervals associated with the two 

methods of prediction.  Whereas the confidence intervals for the average growth rate tend to 

shrink as the horizon increases—e.g., in the case of unit root models these intervals converge to a 

fixed width—the stabilization of confidence intervals for the averages portrays a false sense of 

certainty about the distant future projections for levels.  Regardless of how they are constructed, 

forecasts of levels have statistical properties as outlined in the earlier discussion.    

In time-series modeling as in other approaches of forecasting, prediction errors arise from 

two distinct sources: the first is the intrinsic source described above linked to the structure of the 

time series model, and the second is the uncertainty about the true data-generating process 

related to estimation error.  A forecaster attempts to mitigate this second form of uncertainty 

through the choice of estimation method and the use of as much data as possible.  A forecaster’s 

goal is to minimize the influence of this factor, namely, finding a good prediction model and 

obtaining accurate estimates of its unknown parameters.  The researcher cannot do anything 

about the first source of uncertainty for it is an inherent property of the time series model.   In 

practice there is uncertainty about the choice for model, and unknown parameters must be 
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estimated.  In practice, then, the prediction accuracy will typically be worse than the one that is 

found in the hypothetical situation where the true data generating process is known.  

3.5 Illustrating the Tradeoffs Encountered in Long-Term Forecasts  

To illustrate the challenges encountered in using time series models to project long-run 

healthcare costs,  Figures 3.1, 3.2 and 3.3 present findings for three illustrations of the two 

prototype models discussed above.  Turning initially to the first prototype (3.4), one sees that this 

is simply an AR(1) model.  Figure 3.1 illustrates the width of the confidence interval for a 

forecast as a function of the prediction horizon.
16

16
 Whereas the width of these intervals are not too meaningful, their relative width can be compared across 

specifications.  With     Cα  denoting the critical value, the width of the confidence interval for an AR(1) process 

equals               2 4 2( 1)2 1 hC                 .  The computations in Figure 3.1 set,  2 1C    an 

arbritary normalization.   

  The figure presents intervals for coefficient 

values 𝜑 = 1.00               , 𝜑 = 0.95                 and 𝜑 = 0.80               .  When  𝜑 < 1               the process is stationary, whereas 𝜑 = 1  

defines a random walk which is a nonstationary unit-root process.   

Figure 3.1: Size of Confidence Intervals for AR-Type Models 

Analogous to Figure 3.1, Figure 3.2 shows how much a prediction confidence interval 

grows by the length of the forecast horizon h for the second  prototype (3.6) incorporating the 
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long-memory time series specifications.  The process is stationary for the case when d=0.4, and 

the prediction confidence interval converges to the size defined by the unconditional variance.  

For the nonstationary cases d=0.8 and d=1, the prediction error variance grows without bound, 

and the width of the prediction confidence interval grows at the rate        1
2

d
h


.   

Figure 3.2: Size of Confidence Intervals for Long-Memory Models 

For the stationary models, the width of the confidence intervals quickly levels off as the 

horizon increases.  While at first impression this might seem appealing, this convergence of the 

confidence interval merely reflects that the best prediction at longer horizons is essentially given 

by the unconditional stationary distribution of 𝜐𝑡      .  This in turn means that current information has 

no value for making long-horizon forecasts when the model is stationary.  For the nonstationary 

specification, the confidence interval grows without bound and rapidly so.  For a random walk 

specification, the current value of the process is fully informative about all future forecasts since 

these forecasts are simply the current value.  However, the implied range of uncertainty at long 

horizons becomes so wide as to make the projection virtually uninformative. 

A convenient way to quantify the relationship between the effects of the current values of 

a time series on future forecasts and the uncertainty linked to these forecasts is to measure the 

Prediction Signal-to-Noise ratio (PSN).  For the moving average process (3.1) and its variance 

(3.11), a one-standard deviation ―shock‖ today will induce an adjustment in the prediction of  𝜐𝑡    
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by 𝜎𝜀 × 𝜓ℎ                , and the width of the corresponding prediction confidence interval is given by              

           
 1 2 2

0

h

jj  


          .  This motivates the PSN defined by 

 

 

𝑃𝑆𝑁ℎ =
𝜓ℎ

  ψj
2ℎ−1

𝑗=0

 ,         ℎ = 0,1,…, 

Formally, PSN summarizes the effect of today’s news 𝜐𝑡   on the h-period ahead prediction 

relative to the uncertainty associated with this prediction.   

Figure 3.3 displays the PSN for 𝜑 = 1             and 𝜑 = 0.80                 specifications of the AR(1) 

processes shown in Figure 3.1, and also includes the specification 𝜑 = 0.90              .  In addition, this 

figure presents the PSNs for d = 0.40  d = 0.60 and d = 0.90 specifications of the long-memory 

processes shown in Figure 3.2.   Whereas integration order d = 0.40 specifies a stationary long 

memory process, integration orders d = 0.60 and d = 0.90 designate two non-stationary long 

memory processes.  Note that the figure also includes specification d = 1 (i.e., a nonstationary 

unit-root process) since the AR(1) model       𝜑 = 1      defines this case.   

Figure 3.3: Signal-to-Noise Ratio as a Function of Prediction Horizon 

  

The decay patterns of the PSN reinforce the implications of the above depictions of 

confidence intervals.  In stationary models the signal quickly diminishes, while the noise stays 
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constant.  The opposite situation arises for the unit root case; the signal stays constant and the 

noise increases linearly with the horizon.   Although nonstationary models are attractive in that 

their current values and recent history influence future projections, the confidence intervals 

produced by these models grow at a sufficiently rapid rate so as to render any current data 

uninformative about long-term projections.  

The above findings reveal an inability of standard time-series models to use current 

information in a series to improve long-horizon forecasts without simultaneously sharply 

increasing the uncertainty associated with these predictions.  One encounters a Catch 22 

property.  A time-series model specifies the dynamic properties of a data-generating process, and 

these dynamic properties dictate how news about the process today will impact the process in the 

future.  For a long-horizon forecast to be informed by current data, it is necessary that today’s 

news matter for the future.  However, if information available today is important for the distant 

future, then future information (that becomes available after the forecast is made) must also be 

important for the distant future.  Since the parameters determining these informational impacts 

are the same as those determining the confidence intervals of these forecasts, higher 

informational impact on a long-term prediction necessarily means greater uncertainty.  

Moreover, the structure of conventional time series models implies that uncertainty grows at a 

rapid rate relative to informational content, and this uncertainty continues to compound 

relentlessly the further away the prediction.  This property makes time series models unattractive 

candidates for long-horizon forecasting of the sort done by OACT and CBO in their projections 

of healthcare expenditure in 25, 50 or 75 years from now. 

 

 

 



 

Implications of Time Series Models for Long-Term Projections of Health Expenditures   | Acumen, LLC   21 

4 EMPIRICAL APPLICATION: FORECASTS OF EXCESS COST 
GROWTH 

The following discussion illustrates the empirical properties of long-term forecasts of US 

expenditure on healthcare produced by the three principal variants of time series models 

described above: a stationary (short memory) model, a nonstationary integrated model, and a 

fractionally integrated (long memory) model.  The analysis estimates specifications using data on 

a measure of the excess cost ratio adjusted for changing age-gender composition in the US 

population.  The estimates from these models are used to compute long-term forecasts for 

healthcare expenditure, along with their confidence bands.   

4.1 Description of Data 

The data used in this empirical analysis on NHE and GDP are the same time series used 

by OACT and CBO in their long-term projections of healthcare expenditures.  Figure 4.1 plots 

the per capita values of these series over the 1960 to 2010 period in the US. 

Figure 4.1: Historical Per Capita NHE and GDP  

 

Some of the increases in per capita expenditure can be explained by demographic 

changes, and healthcare expenditure variables are often adjusted by an age-gender factor to 

neutralize this source.  Figure 4.2 presents the annual growth rates for age-gender-adjusted per 

capita expenditures.  In addition to the NHE series, this figure also shows corresponding growth 

rates for the time series computed from Personal Health Care Expenditure (PHE).   Inspection of 
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Figure 4.2 reveals that the two growth rates have quite similar profiles, which suggests that 

forecasts of one series fundamentally predicts the other.  The aging factor used to construct these 

series relies on standard methods that combine 1960-1975 Census data with 1975-2010 SSA 

Population Data; this is the same method used by OACT and CBO.   

Figure 4.2: Age-Adjusted Growth Rates in Per-Capita NHE and PHE Expenditure 

 

While an aging population influences healthcare expenditure, it only explains a small 

fraction of the overall growth in expenditure.  This is evident in Figure 4.3 that presents the 

actual NHE to GDP ratio (dotted line) along with age-gender-adjusted NHE to GDP ratio (solid 

line).  The latter is computed as if the demographic composition were constant over the 50 year 

period (fixed at the 2010 composition).  The actual NHE to GDP ratio has grown from 5% in 

1960 to almost 18% in 2010.  Had the age-gender factor instead been constant over this period 

(again fixed at the 2010 composition), the hypothetical NHE to GDP ratio would instead have 

been about 6% in 1960.  So, only about one percentage point out of 13 percentage points can be 

attributed to the aging population over this half a century.  
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Figure 4.3: Historical Ratios of NHE to GDP  

 

To formulate forecasts of healthcare expenditures, our analysis relies on data representing 

a measure of the excess cost ratio adjusted for age composition.  Define the age-gender adjusted 

ratio of NHE to GDP in year t as  

   

 
t

t

t t

NHE
R

GDP AgeGender



, 

 where the age-gender factor AgeGendert  is constructed by the standard methods using 1960-

1975 Census data and 1975-2010 SSA Population Data.  Our empirical analysis constructs data 

on differences over time in the natural log of Rt which equals  
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This quantity measures growth in the ratio of NHE to GDP, which corresponds to the ECG.  Our 

series imposes the normalization  2010

20102010

NHE

GDP
R  , which implies predictions of NHE/GDP hold 

AgeGender constant at the 2010 level. 

4.2 Forecasts Based on a Stationary and Nonstationary AR Specification  

The analysis estimates two familiar formulations of autoregressive models: (i) a 

stationary AR(2) model with a deterministic trend, and (ii) an AR(2) model with a unit root and 
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an unrestricted constant.  Specification (ii) represents an integrated times series model that gives 

rise to a stochastic trend in the forecasts and nonstationarity.  Specification (i) incorporates a 

linear deterministic trend in the series but is otherwise stable and corresponds in this sense to a 

natural analogue to the stationary specification.   

Estimation of the trend-stationary AR(2) model yields the fitted specification:  

            (4.1)  
1 2

(0 14) (0 14) (0 18) (0 0014)

ˆln 1 16 ln 0 29 ln 0 34 0 002667 ( 1960)t t t tR R R t  

   

          

with  ˆ 0 02243                       ; standard errors appear below corresponding coefficient estimates.  Estimation 

of the integrated AR(2) model produces:  

                             (4.2)  
1

(0 14) (0 0045)

ˆln 0 26 ln 0 0156t t tR R 

 

       

with  ˆ 0 02319                       .  Fitted specification (4.2) can also be expressed as 

                                                                                                            
1 2

ˆln 1 26 ln 0 26 ln 0 0156t t t tR R R         , 

                                                                                           

which reveals that the autoregressive coefficients are in line with those of the trend-stationary 

AR(2) model.  The estimated deterministic drift terms are also in the ballpark.  For the trend-

stationary models  
1 2E( ln ) 1 16E( ln ) 0 29E( ln ) 0 002667t t tR R R          , which establishes 

that                                E( ln ) 2 0tR %   under stationarity.  Correspondingly, for the integrated model,                              

𝐸(∆lnRt) = 0.0156/(1-0.26) = 2.1%                                                         .  Thus, the implied growth rates are quite similar for the two 

specifications.  

It is straightforward to construct forecasts for future values of Rt given values for          
2010R

and         
2009R .  For the trend-stationary model this is done using the recursion  

(4.3)       
1 2

ˆ ˆ ˆln 1 16 ln 0 29ln 0 34 0 002667( 1960)T h T T h T T h TR R R T h                 

                              where T = 2010, and with the observed ratios 2010 2010
ˆln R 

= 2010ln R     and                              2009 2010
ˆln R 

=
2009ln R     as the 

initial values for the recursion.  

Relationship (3.2) based on the MA representation of a time series implies that the 

forecast errors are given by  

                                         (4.4)                                 
 1

0

ˆln ln
h

T h T T h i T h i

i

R R  


    



      . 

One can compute the coefficients recursively using the formula: 

 

 
1 2 0 11 2

ˆ ˆ with 1 and 0i i i            
 

 

 

This yields the following estimate for the forecast error variance:  
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Using this quantity to form error bands yields  

(4.5)
 1

2

0

ˆ ˆln 2
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The forecasts for the integrated model are computed analogously, though an important 

difference is that the unit root causes                       1 2

0

h

ii





   as  h            . 

Figure 4.4 plots the projections,  ˆ
T h TR  

           , implied by the two models and their 

corresponding error bands for this ratio, which are given by
  1 2

0

ˆ ˆexp ln 2
h

T h T ii
R  



  
                                                    .   

Figure 4.4: Forecasts of NHE as a Percentage of GDP Based on a Trend-Stationary and an 

Integrated Autoregressive Model 

 

Figure 4.4 reveals that neither specification produces plausible long-horizon forecasts. 

The point forecasts are similar, as the forward projections are mainly driven by the linear 

deterministic trend. Seventy-five years out, this trend results in NHE to GDP projections that 

exceed 80%, and the prediction error bands exceed 100% in the case of the unit root model. 

These obviously unrealistic values arise because these reduced-form style models do not 

incorporate structural elements.  The time series specifications simply assume that past trends 
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will continue into the distant future, without regard to natural constraints.  To predict that the 

NHE to GDP ratio would be 18% in 2010, may have been deemed unlikely if made five decades 

earlier, when the NHE to GDP ratio was about 5%.  While difficult to compare, it does seem 

rather unrealistic that the GDP share for medical expenditures would ever approach 80% given 

that all personal consumption which includes medical care spending now represents only 70% of 

GDP. 

4.3 Forecasts Based on a Fractionally-Integrated AR Specification  

The formulation of an Autoregressive Fractionally Integrated Moving Average 

(ARFIMA) model estimated in this analysis includes a constant and a linear trend, with the 

analytical form given by  

(4.6)                                                                    (1 )(1 ) logd

t tL L R a bt      . 

This ARFIMA(1,d,0) model is estimated by maximum likelihood using the ARFIMA package 

for OxMetrics, resulting in the following point estimates and corresponding standard errors in 

brackets:  

                                                                                                                                                           .               
(0 1481)

ˆ 0 7584


   

(0 1938)

ˆ 0 3043d


   
(0 060)

ˆ 0 5807a


    

(0 00153)

ˆ 0 00216b


 

These estimates imply a stationary variant of a long-memory model since  1
2

d̂               .

Figure 4.5 presents the forecasts and standard errors produced by the ARFIMA package. 

The error bands are generated in the same manner as those in Figure 4.4, with confidence 

intervals computed as two times the standard deviation to either side.   
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Figure 4.5: Forecasts of NHE as a Percentage of GDP Based on a Fractionally-Integrated 

Autoregressive Model  

 

The projections and error bands in Figure 4.5 are similar to those of the two 

autoregressive models described above. The results obtained with the fractionally integrated 

model are also not encouraging.  The trend is estimated to be slightly larger in this model, which 

results in a predicted NHE to GDP ratio that is slightly higher at long horizons.  In a fractionally 

integrated model, a shock has a lasting effect that exceeds that of stationary autoregressive 

models, but less than of a unit root model.  This feature can be seen from the prediction error 

bands of the fractionally integrated models, which are wider than that of the stationary model but 

narrower than those of the unit root model. 

4.4 Summary of Findings  

Using 50 years of data on the age-gender-adjusted NHE to GDP ratio, all three fitted 

time-series models produce point forecasts that are simply implausible in the long horizon.  

When making forecasts based on reduced-form time series models, an implicit assumption is that 

the future will evolve in a similar manner to that observed in the past.  Over the past five 

decades, the NHE to GDP ratio has tripled, and all the estimated time series specifications 

extrapolate this trend into the future.  The estimated linear trend in NHE to GDP is similar for 

the stationary and integrated time series specifications, causing their forecasts to be similar.  The 

different manner in which errors are accumulated in the two autoregressive specifications is 
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evident from the prediction error bands, as those of the unit root model continue to grow in 

width, eventually covering a range for which NHE exceeds GDP.  The results obtained with the 

fractionally integrated model are also not encouraging.  The trend is estimated to be slightly 

larger in this model, which results in a predicted NHE to GDP ratio that is slightly higher at long 

horizons.  In a fractionally integrated model a shock has a lasting effect that exceeds that of 

stationary autoregressive models, but less than that of a unit root model.  This feature can be seen 

from the prediction error bands of the fractionally integrated models which are wider that of the 

stationary model, but narrower than those of the unit root model. 
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5 CONCLUDING DISCUSSION 

From a conceptual perspective, this report explains why conventional time series models 

fail to offer a promising framework for producing long-term forecasts, such as those in the 

advanced years of the 75-year horizon used to evaluate the financial viability of future healthcare 

spending in the US.  Candidate time series specifications present an unattractive tradeoff.  

Whereas stationary models produce constant bands for confidence intervals, they are generally 

uninformative about long-horizon forecasts since they merely set these forecasts equal to an 

unconditional mean that does not distinguish recent from earlier historical shocks when 

constructing projections.  Nonstationary time series models, on the other hand, allow for current 

trend deviations to affect future projection values, but they produce confidence intervals that 

explode as the projection horizon increases.  Thus, forecasters selecting time series processes to 

make their long-term projection either encounter a situation where their estimates are precise but 

uninformative, or informative but imprecise.   

The intuition for the inability of time series models to construct accurate long-horizon 

forecasts is the following: A time series model specifies the dynamic properties of a data-

generating process, and these dynamic properties dictate how news about the process today will 

impact the process in the future.  While the basic structure of a time series model can be used to 

make predictions at any forecasting horizon, this framework has paradoxical implications for 

long-horizon forecasting.  For a long-horizon forecast to be informative, it is necessary that 

today’s news matter for the future.  By this we mean that the long-horizon forecast depends on 

the information set available today.  However, if information available today is important for the 

distant future, then future information (that becomes available after the forecast is made) should 

also be important for the distant future. In fact, this structure is indeed implied by time series 

models.  The implication of future information being important is that a long-horizon forecast is 

fraught with uncertainty.  This Catch 22 is the major stumbling block for long-horizon 

forecasting using standard time series models.  After considering a broad class of time series 

models, including stationary and nonstationary ARMA models and short- and long-memory 

specifications, our conclusion is that standard time series models are—for all practical 

purposes—useless for making long-horizon forecasts.     

While this Catch 22 tradeoff can be seen in the empirical findings in this report 

describing projections of future values of excess cost growth in healthcare spending, this is not 

the largest problem seen in the estimated forecasts.  Instead, all three specifications estimated in 

the analysis produce point forecasts that are simply implausible in the long horizon.  The analysis 

estimates three variants of autoregressive models covering the spectrum of candidate 

specifications available in the literature.  The NHE to GDP ratio has tripled in the past 50 years, 

and all estimated specifications extrapolate this trend into the future.  While this rate might 

continue in the next decade or so, it cannot continue for another 50 to 75 years.  The stationary 
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model with a linear trend produces essentially the same point estimates as the nonstationary 

model with a unit root.  The results obtained for the fractionally integrated model imply slightly 

higher forecasts.   All estimated specifications forecast NHE as a percentage of GDP to increase 

over 10 percentage points in two decades—from just under 20% now to over 30% by 2030—and 

exceed over 80% by the end of the 75-year forecast horizon. 

The underlying trends are key for forecasting healthcare costs several decades into the 

future.  A major obstacle is that these trends cannot be estimated accurately from past trends, for 

the simple reason that past trends have been too large to be sustainable for much longer. 

Standard time series models produce naïve predictions of trends, with prediction bands that are 

typically either too large or too small depending on whether a researcher adopts a nonstationary 

or stationary specification.  A potential modification for overcoming these disadvantages could 

be to formulate forecasts incorporating ancillary variables—such as income and medical practice 

in the case of health expenditures—to reflect that as healthcare expenditures grow relative to 

GDP, economic and political forces will eventually slow this growth.  Because no evidence of 

such forces currently appear in the historical data, reduced-form time series specifications fail to 

account of such factors.  Instead, economic models or other a priori structural relationships 

would be required to provide the principal foundation for specifying long-run trends and far-

distant forecasts.  Although time series models could be adapted to incorporate such components, 

the resulting frameworks would go well beyond familiar specifications.  In such instances, 

conventional time series models could be used to describe short-term fluctuations around trends, 

but they would likely play only a minor role in constructing long-term forecasts for the reasons 

discussed in this paper.  

 



 

 

 

 

 

 

Implications of Time Series Models for Long-Term Projections of Health Expenditures   | Acumen, LLC   31 

REFERENCES 

Beveridge, S. and C. R. Nelson (1981). ―A New Approach to Decompositions of Time Series 

Into Permanent and Transitory Components with Particular Attentions to Measurement of 

the Business Cycle‖. Journal of Monetary Economics, vol. 7, 151-174. 

Borger C, Rutherford TF, Won GY. Projecting long-term medical spending growth. Journal of 

Health Economics. 2008;27(1):69–88. 

Box, G. E. P. and G. M. Jenkins (1976). Time Series Analysis; Forecasting and Control. Prentice 

Hall. 

Caldis, TG and U.S. Department of Health and Human Services. The long-term projection 

assumptions for Medicare and aggregate national health expenditures. Washington, DC: 

Centers for Medicare & Medicaid Services; 2009. 

Clements, M. P. and D. F. Hendry (1998), Forecasting Economic Time Series, Cambridge 

University Press, Cambridge. 

Congressional Budget Office (2012). The 2012 Long-Term Budget Outlook. June 2012. 

http://www.cbo.gov/sites/default/files/cbofiles/attachments/06-05-Long-

Term_Budget_Outlook_2.pdf

Congressional Budget Office (2012). Supplemental Data to the 2012 Long-Term Budget 

Outlook.  Accessed Dec 10, 2012. 

http://www.cbo.gov\sites\default\files\cbofiles\attachments\43288-

LTBOSuppTables_0.xls

Diebold, Francis X. (2006). Elements of Forecasting. 4th ed. South-Western College Pub. 

Federal Old-age and Survivors Insurance and Federal Disability Insurance Trust Funds (OASDI) 

Board of Trustees (2012).  The 2012 Annual Report of the Board of Trustees of the 

Federal Old-age and Survivors Insurance and Federal Disability Insurance Trust Funds .  

Washington, April 25, 2012. http://www.ssa.gov/oact/tr/2012/tr2012.pdf

Friedman, JN and National Research Council (US) Committee on National Statistics. (2010), 

―Improving Health Care Cost Projections for the Medicare Population: Summary of a 

Workshop.‖, Washington (DC): National Academies Press (US); Appendix A, Predicting 

Medicare Cost Growth. Available from: http://www.ncbi.nlm.nih.gov/books/NBK52815/

Getzen T. Long-Run Forecasts of National Health Expenditure Growth. SSRN Working Paper, 

October 28, 2011. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1950810

Granger, C. W. J. and P. Newbold (1986). Forecasting Economic Time Series. 2nd ed. Academic 

Press. 

Hall RE, Jones CI. (2007), ―The value of life and the rise in health spending.‖  Quarterly Journal 

of Economics;122(1):39–72. 

Harris KM, Galasso JP, Eibner C, editors. U.S. Department of Veterans Affairs. (2008), ―Review 

and evaluation of the VA enrollee health care projection model.‖ RAND Corporation for 

the Department of Veterans Affairs. 

Hamilton, James D. (1994). Time Series Analysis. Princeton N.J.: Princeton University Press. 

http://www.cbo.gov/sites/default/files/cbofiles/attachments/06-05-Long-Term_Budget_Outlook_2.pdf
http://www.cbo.gov/sites/default/files/cbofiles/attachments/43288-LTBOSuppTables_0.xls
http://www.ssa.gov/oact/tr/2012/tr2012.pdf
http://www.ncbi.nlm.nih.gov/books/NBK52815/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1950810


 

 

 

 

 

 

 

 

32   Acumen, LLC |   References 

Hansen, B. E. (2007). ―Least squares model averaging‖, Econometrica vol. 75, pp. 1175-1189. 

Hansen, P. R. (2005). ―Granger’s Representation Theorem: A Closed-Form Expression for I(1) 

Processes‖. Econometrics Journal, vol. 8, pp.23-38. 

Heffler, Steve, T. Caldis, and S. Smith. (2012)  ―The Long-Term Projection Assumptions for 

Medicare and Aggregate National Health Expenditures.‖  Centers for Medicare and 

Medicaid Services Memorandum, November 27, 2012. http://www.cms.gov/Research-

Statistics-Data-and-Systems/Statistics-Trends-and-

Reports/ReportsTrustFunds/Downloads/ProjectionMethodology2012.pdf

Johansen, Søren (1988). ―Statistical Analysis of Cointegration Vectors‖. Journal of Economic 

Dynamics and Control, vol. 12, pp. 231-254. 

Johansen, Søren and Morten Ø. Nielsen (2009). ―Likelihood Inference for a Nonstationary 

Fractional Autoregressive Model‖. Unpublished manuscript. 

Lee, R. and Miller, T. (2002), An Approach to Forecasting Health Expenditures, with 

Application to the U.S. Medicare System. Health Services Research, 37: 1365–1386. 

doi: 10.1111/1475-6773.01112 

National Health Expenditure Accounts (NHEA). NHE summary including share of GDP, CY 

1960-2010. http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-

and-Reports/NationalHealthExpendData/Downloads/NHEGDP10.zip

Office of the Chief Actuary of the Social Security Administration (2012).  The Long-Range 

Demographic Assumptions for the 2012 Trustees Report. April 23, 2012. 

http://www.ssa.gov/oact/tr/2012/2012_Long-Range_Demographic_Assumptions.pdf

Shatto, JD and Clemens MK. (2012)  ―Projected Medicare Expenditures under Illustrative 

Scenarios with Alternative Payment Updates to Medicare Providers.‖  Centers for 

Medicare and Medicaid Services Memorandum, May 18, 2012. 

http://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-

reports/reportstrustfunds/downloads/2012tralternativescenario.pdf

Stock, J. H. and Watson, M. W. (2002). ―Forecasting using principal components from a large 

number of predictors‖.  Journal of the American Statistical Association vol. 97, pp.1167-

1179.  

http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ReportsTrustFunds/Downloads/ProjectionMethodology2012.pdf
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/NHEGDP10.zip
http://www.ssa.gov/oact/tr/2012/2012_Long-Range_Demographic_Assumptions.pdf
http://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/reportstrustfunds/downloads/2012tralternativescenario.pdf

	TS_Forecasts_of_Excess_Cost_Growth_April13.pdf
	Abstract
	1 Introduction
	2 Excess Cost Growth and Long-Run Forecasts of Healthcare Expenditures
	2.1 Defining Excess Cost Growth
	2.2 OACT and CBO Long-Run Medicare Projections

	3 Properties of Forecasts Using Time Series Models
	3.1 Predicting Future Values Based on MA Models
	3.2 Measuring Uncertainty of Forecasts
	3.3 Classifications of Familiar Time Series Processes as MA Models
	3.3.1 Stationary Short-Memory Processes
	3.3.2 Adding a GARCH Structure
	3.3.3 Stationary Long-Memory Processes
	3.3.4 Nonstationary Long-Memory Processes
	3.3.5 Integrated Processes
	3.3.6 Exponential Smoothing

	3.4 Unattractive Tradeoffs in the Selection of Time Series Models
	3.5 Illustrating the Tradeoffs Encountered in Long-Term Forecasts

	4 Empirical Application: Forecasts of Excess Cost Growth
	4.1 Description of Data
	4.2 Forecasts Based on a Stationary and Nonstationary AR Specification
	4.3 Forecasts Based on a Fractionally-Integrated AR Specification
	4.4 Summary of Findings

	5 Concluding Discussion
	References




