OFFICE OF THE ACTUARY

DATE: June 5, 2018

FROM: Stephen K. Heffler
 Todd G. Caldis
 Sheila D. Smith
 Gigi A. Cuckler

SUBJECT: The Long-Term Projection Assumptions for Medicare and Aggregate National Health Expenditures

The Office of the Actuary (OACT) annually produces 75-year Medicare expenditure projections for the annual report of the Medicare Board of Trustees to Congress. The assumptions used in the long-term projections have evolved over several decades through internal deliberations, five independent technical advisory panel reports, ongoing discussions with the Medicare Trustees and their staffs, and the input of various external researchers. This memorandum updates the exposition of OACT’s long-range health spending projection methods used in the 2018 Medicare Trustees Report.

Because of the significance of the long-range projections for public policy makers, it is important that the projection assumptions be as transparent and understandable as possible. The purpose of this memorandum is to promote a more complete understanding of the long-range cost growth assumptions by: (i) describing the projection challenge, (ii) providing a detailed description of the current-law long-range assumptions, (iii) tracing the evolution of the long-range assumptions used in the Trustees Report, and (iv) evaluating the strengths and limitations of the current cost growth assumptions. Making such projections is not an exact science, and any long-term projection model necessarily makes assumptions about the continuation of trends into an uncertain future. The Office of the Actuary and the Board of Trustees continue to make every effort to ensure that reasonable projections of Medicare’s future are included in the Trustees’ annual report.

The Long-Range Projection Challenge

Federal law requires the Medicare Trustees to report annually to Congress about the financial and actuarial status of the Medicare program. OACT provides professional technical assistance to the Trustees in their preparation of this report. Financial solvency determinations, defined conceptually as measurement of the adequacy of projected program revenues to pay for projected program obligations under current law, are reported for the Medicare trust funds.

In general, long-term projections, which span 75 years beginning with the current year, are made under an assumption that existing institutional arrangements and program parameters embodied in current law will prevail for the entire projection period. The 75-year “current-law” projections are intended to reflect a policy-neutral baseline that is useful for policy makers, researchers, health-
care providers, beneficiaries, and others in considering the need for changes or adjustments in national policy.

Both the time horizon and the institutional perspectives employed in long-term projections have on occasion been criticized as unrealistic. Some observers have argued that projections extending far into the future are so uncertain as to be of limited value and that a current-law perspective assumes the perpetuation of existing policy arrangements beyond any reasonable point. But such criticisms overlook a fundamental premise of long-term solvency reporting; that is, projecting the long-term consequences of the institutional status quo affords decision makers a reasonable opportunity to investigate trends, to consider alternatives, and to implement well-conceived policy adjustments before financial or programmatic challenges reach crisis proportions. Moreover, in view of the long-range financial commitments made by the Medicare program for the entire U.S. working population, it is critical to take every step to help ensure that these commitments can be fulfilled, starting with a long-range evaluation of the financial status of Medicare.

Long-range projections of Medicare revenues that appear in the Trustees Report are produced using various long-range economic and demographic assumptions such as the size and age distribution of the population, the size of the work force, average earnings levels, and the Gross Domestic Product (GDP). These economic and demographic assumptions are determined annually by the Social Security and Medicare Board of Trustees based on recommendations by the Office of the Chief Actuary at the Social Security Administration. Projection of long-term Medicare and aggregate national health expenditures by the Office of the Actuary at the Centers for Medicare & Medicaid Services follows a similar process, but involves additional assumptions that are especially challenging to formulate and to validate.

The most difficult challenge in making long-range health expenditure projections is in determining if and when a sector of the economy with a long history of rapid cost growth will stabilize relative to the rest of the economy. Since the mid-20th century, the U.S. health sector has grown substantially faster than the economy as a whole. As Chart 1 shows, since 1960 the health sector's share of all of the nation's economic activity has increased by a factor of 3.6 (from 5 percent in 1960 to nearly 18 percent in 2016). Given that the U.S. economy as a whole has experienced more than fivefold real growth since 1960, the health sector has experienced a nineteen-fold increase (5 times 3.6) in real spending over the past 57 years. The share of national output that the U.S. health sector absorbs has long, and by far, exceeded the health sector share of any other developed nation, as shown in Chart 2, and there is no evidence that the outlier status of the U.S. in this regard relative to other developed nations will end.

As an example, consider new entrants to the workforce at age 20. If these individuals work and pay Hospital Insurance payroll taxes on their earnings for a sufficient period, then they will qualify for HI benefits at age 65 (or earlier, if they become disabled). Once enrolled at 65, these beneficiaries may live for another 30 years or more. In this way, Medicare makes financial commitments that span at least the next 75 years.
Chart 1—National Health Expenditures (NHE) as a Percentage of Gross Domestic Product (GDP) 1960-2016

Source: Centers for Medicare & Medicaid Services, Office of the Actuary.
Chart 2—CY 2015 Health Expenditures as a Share of GDP
Selected OECD Countries

Source: OECD Health Data 2017

Note: For the United States the 2015 data reported here do not match the 2015 data point for the United States in Chart 1 since the OECD uses a slightly different definition of “total expenditures on health” than that used in the United States National Health Expenditure Accounts.
One way of analyzing health spending trends is to compare the growth rate of the U.S. health sector with that of the overall economy. Using a definition of “excess cost growth” as the difference between (i) the U.S. per capita growth rate in age-gender-adjusted health-care costs and (ii) the per capita growth rate in GDP (both in constant dollars), Table 1 shows average excess cost growth rates for selected time periods since 1975. Average excess cost growth rates for national health expenditures (NHE) exhibit some volatility depending on which time periods are used for defining averages, but over the long run this differential has for extended periods been above 2 percent per year or just slightly below this level. There are only two periods in which rates of excess cost growth have clearly deviated from a long-term rate of 2-percent. One of those periods, 1995-2000, coincided with the widespread adoption of managed care approaches to delivery of health care in the 1990s, but that slowdown proved temporary as strong excess cost growth reemerged after the turn of the century. The second period occurred in the wake of the Great Recession when the economy experienced several years of low excess cost growth, on average -0.3 for the five year period ending in 2015. Although negative excess cost growth rates were observed in the years 2011-2013, the rate turned positive again in 2014 and was 1.2 percent in 2015, a year that was strongly influenced by the implementation of the health insurance coverage expansions under the Affordable Care Act (ACA). In 2016, the excess cost growth rate pulled back to 0.9 percent. Whether the rate will pull back further in 2017 or whether regression to the longer-term mean will take place is still uncertain. However the return of excess cost growth observed over the past three years suggests that the very low negative rates experienced in 2011-2013 were a temporary deviation from long-term trend. Even if the long-term excess cost growth rate were to decelerate to a 1 percent annual rate, the U.S. health sector would still be experiencing rapid growth relative to the rest of the U.S. economy, and if the historic annual excess cost growth rate of 2 percent were to resume and continue unchecked, the health sector would encompass most, if not all, of the U.S. economy within the 75-year reporting horizon.

Since a nation that produces only health care is an impossibility, any method for projecting long-range U.S. national health expenditures should consider and take into account any factors that would contribute to an eventual slowdown in long-term growth rates for the health sector, to the degree deemed likely to occur under existing law. But available research is inconclusive concerning how much of a long-term slowdown in growth rates might take place, the probable timing of a slowdown, the mechanisms that would cause a slowdown, and whether a slowdown is likely to occur under current law. How these questions are addressed profoundly influences the outcome of the expenditure projection process.

Despite the difficulty and uncertainty involved in projecting long-range NHE and Medicare costs, projections are required for considering whether the promises made to the working population today can reasonably be expected to be fulfilled many years in the future. The balance of this memorandum describes the long-range health care cost growth assumptions, explains the history behind the evolution of those assumptions, and finally considers the reasonableness of the assumptions.
Table 1 - Compound Excess Cost Growth Rates, Selected Time Periods 1975-2016

<table>
<thead>
<tr>
<th>Time period</th>
<th>Compound Constant-Dollar, Per Capita Growth</th>
<th>Excess Cost (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NHE (rounded)</td>
<td>GDP (rounded)</td>
</tr>
<tr>
<td>Periods beginning with 1975:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 1980 (5 years)</td>
<td>4.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td>through 1985 (10 years)</td>
<td>4.8%</td>
<td>2.5%</td>
</tr>
<tr>
<td>through 1990 (15 years)</td>
<td>5.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>through 1995 (20 years)</td>
<td>4.6%</td>
<td>2.2%</td>
</tr>
<tr>
<td>through 2000 (25 years)</td>
<td>4.3%</td>
<td>2.4%</td>
</tr>
<tr>
<td>through 2005 (30 years)</td>
<td>4.3%</td>
<td>2.3%</td>
</tr>
<tr>
<td>through 2010 (35 years)</td>
<td>3.9%</td>
<td>1.9%</td>
</tr>
<tr>
<td>through 2016 (41 years)</td>
<td>3.5%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Periods beginning with 1980:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 1985 (5 years)</td>
<td>4.8%</td>
<td>2.3%</td>
</tr>
<tr>
<td>through 1990 (10 years)</td>
<td>5.3%</td>
<td>2.3%</td>
</tr>
<tr>
<td>through 1995 (15 years)</td>
<td>4.6%</td>
<td>2.0%</td>
</tr>
<tr>
<td>through 2000 (20 years)</td>
<td>4.2%</td>
<td>2.3%</td>
</tr>
<tr>
<td>through 2005 (25 years)</td>
<td>4.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>through 2010 (30 years)</td>
<td>3.7%</td>
<td>1.8%</td>
</tr>
<tr>
<td>through 2016 (36 years)</td>
<td>3.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Periods beginning with 1985:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 1990 (5 years)</td>
<td>5.7%</td>
<td>2.3%</td>
</tr>
<tr>
<td>through 1995 (10 years)</td>
<td>4.5%</td>
<td>1.9%</td>
</tr>
<tr>
<td>through 2000 (15 years)</td>
<td>3.9%</td>
<td>2.4%</td>
</tr>
<tr>
<td>through 2005 (20 years)</td>
<td>4.0%</td>
<td>2.2%</td>
</tr>
<tr>
<td>through 2010 (25 years)</td>
<td>3.5%</td>
<td>1.7%</td>
</tr>
<tr>
<td>through 2016 (31 years)</td>
<td>3.1%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Periods beginning with 1990:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 1995 (5 years)</td>
<td>3.2%</td>
<td>1.4%</td>
</tr>
<tr>
<td>through 2000 (10 years)</td>
<td>3.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>through 2005 (15 years)</td>
<td>3.4%</td>
<td>2.1%</td>
</tr>
<tr>
<td>through 2010 (20 years)</td>
<td>3.0%</td>
<td>1.5%</td>
</tr>
<tr>
<td>through 2016 (26 years)</td>
<td>2.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Periods beginning with 1995:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 2000 (5 years)</td>
<td>2.9%</td>
<td>3.3%</td>
</tr>
<tr>
<td>through 2005 (10 years)</td>
<td>3.6%</td>
<td>2.4%</td>
</tr>
<tr>
<td>through 2010 (15 years)</td>
<td>2.9%</td>
<td>1.6%</td>
</tr>
<tr>
<td>through 2016 (21 years)</td>
<td>2.4%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Periods beginning with 2000:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 2005 (5 years)</td>
<td>4.2%</td>
<td>1.6%</td>
</tr>
<tr>
<td>through 2010 (10 years)</td>
<td>2.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>through 2016 (16 years)</td>
<td>2.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Periods beginning with 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 2010 (5 years)</td>
<td>1.6%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>through 2016 (11 years)</td>
<td>1.4%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Periods beginning with 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>through 2010 (5 years)</td>
<td>1.2%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

Note: NHE rates were previously adjusted to remove age-gender effects on cost growth.
Source: Centers for Medicare and Medicaid Services, Office of the Actuary.
Long-Range Health Cost Growth Assumptions

This section summarizes the long-range excess cost growth assumptions used in the 2018 Trustees Report. Consideration of the history and reasonableness of the assumptions is deferred until later sections.

The 75-year projections are constructed around the notion of excess cost growth, or the degree to which growth in Medicare or health expenditures generally is expected to exceed the growth rate of GDP. Excess cost growth is an intuitively understandable indicator of when a particular sector is increasing in size relative to the rest of the economy. By definition, as long as a sector’s rate of cost growth exceeds that of GDP, that particular sector (such as health care) will be increasing as a share of the nation’s total economic output. As noted earlier in the discussion of Table 1, one way of measuring excess health cost growth is as a difference of rates of growth: the rate of age-gender-adjusted, per capita health care cost growth minus the rate of per capita GDP growth.\(^2\)

It is important to recognize that 75-year projections are only partially based upon long-run excess cost growth assumptions. In the case of the first 10 years of the 75-year Medicare projections, projections of costs are made separately for each category of health spending (for example, inpatient hospital, physician, home health care, etc.) and are built up from assumptions about payment rate updates for each category of spending, changes in utilization of services, and changes in the “intensity” or average complexity of services. (These methods are described in detail in the Medicare Trustees Report.) An implicit year-10 excess cost growth rate can then be computed from the results of the short-range projections. Years 11 through 24 of the 75-year projection are computed on an excess cost growth basis using rates that blend the excess cost growth rate implicit in the year 10 short-range projection and the long-range excess cost growth rate expected to prevail in year 25. For the last 51 years of the long-range projection (years 25 to 75), excess cost growth assumptions are derived using the output from the factors contributing to growth model described in more detail in the next section.

Each Medicare subpart has a unique implicit excess cost growth rate as of year 10 of the projection. Prior to the Affordable Care Act (ACA), the separate tenth-year growth rates were transitioned to the same long-range excess cost growth rate assumption in year 25, so that the program would then be projected as having a common set of excess cost growth rates for years 25 to 75. This long-range rate of excess cost growth for Medicare was assumed to be similar to the excess cost growth rate prevailing for the rest of the U.S. health sector. Current-law price provisions of the ACA, which require permanently slower annual payment updates relative to prior law for many but not all Medicare payment systems, mean that it is no longer feasible as it once was to transition to a single excess cost growth rate for the entire Medicare program in the current law long-term Medicare projection. Additionally, the enactment of the Medicare Access

\(^2\) Excess cost growth calculations can be performed either on a nominal dollar or a real dollar basis as long as the approach chosen is consistently applied. The long-range Medicare projections have always been computed on a nominal dollar basis. In the actual development of the long-range projections, excess cost growth is computed on a multiplicative basis fully consistent with the additive framework presented here. For a detailed explanation of the implementation of excess cost growth computations see the Notational Appendix of the May 12, 2009 Projections Methodology memorandum “The Long-Term Projection Assumptions and Aggregate National Health Expenditures” at http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ReportsTrustFunds/Downloads/ProjectionMethodology.pdf
and CHIP Reauthorization Act (MACRA) of 2015 specifies physician payment updates with new incentives that replace payments previously determined by the sustainable growth rate (SGR). As a result, for the current law long-term Medicare projection the long-range assumptions of underlying medical price and quantity trajectories are now developed from which excess cost growth rates for the entire long-term projection horizon can be computed that are unique to each Medicare subpart.

In particular, for the last 51 years of the 75-year period, growth assumptions are developed for overall national health spending, and these assumptions are used in the development of separate Medicare spending assumptions for Part A, certain subsets of Part B, and Part D. A description of the overall national health spending assumption is discussed below, followed by a detailed description of the methodology used for determining the long-range Medicare spending growth assumptions for Medicare Part A, Part B, and Part D.

Overall National Health Expenditures (NHE)

The long-range projection starts with the assumption that overall per capita national health spending will increase on a year-by-year basis at rates determined using the Office of the Actuary’s “factors contributing to growth” (FCG) model. The FCG model is an assumptions-based approach in which the historical impact of key drivers of national health spending growth are used to inform expectations about the long-run future, including the long-range implications of an increasing share of our economic resources being devoted to health spending. The model is an extension of the basic factors analysis used by the 2000 Medicare Technical Review Panel. It draws on the additional data available since 2000 as well as refinements to the economic literature on the factors underlying health care cost growth—specifically, changes in national income, relative medical price inflation, health insurance coverage, and residual effects, which are primarily the impact of innovations in medical technology. (Appendix A describes the FCG model in detail.) Overall health spending is used as a starting point in developing the Medicare assumption since a significant amount of research is available decomposing the drivers of overall health spending trends (both for the U.S. and other countries), and it is assumed that over the long run that those drivers would be generally similar across the health sector.

The per capita increase in health care costs reflects the combined effects of general inflation, medical-specific “excess” price inflation (medical price inflation above general price inflation), and changes in the utilization of services per person and the “intensity” or average complexity per service. General inflation, as measured by the GDP deflator, is assumed to increase 2.2 percent per year over the long-range period. Relative medical price inflation for the overall health sector is assumed to grow at 0.8 percent annually. This assumption is roughly equivalent to the difference between the growth in the personal health care deflator over the past quarter century and the growth in the GDP deflator over this same period. Combining the projected 2.2 percent general inflation growth with the assumed 0.8 percent relative medical price inflation results in

3 The Bipartisan Budget Act of 2018, which among other things altered sequester provisions affecting the Medicare program, did not fundamentally alter the statutory structure that makes it infeasible to assume a long-run convergence under current law to a single rate of excess cost growth for all Medicare subparts.

The medical price change can be decomposed into its two main factors: (i) the prices paid for inputs to the production of medical care (e.g., employee compensation, medical equipment, structures), or medical input price growth and (ii) the efficiency with which those inputs are combined to produce medical care, or resource-based health sector multifactor productivity growth. Resource-based health sector multifactor productivity is assumed to grow at a pace consistent with published historical rates for hospitals and physicians, and to average roughly zero for all other provider categories, such as skilled nursing facilities, home health agencies, hospices, diagnostic laboratories, dialysis centers, ambulance companies, etc. In aggregate for the overall health sector, resource-based health sector multifactor productivity growth is estimated to be 0.4 percent per year. Thus, the medical input price growth for the overall health sector, therefore, is assumed to be 3.4 percent per year.

Finally, the growth in the volume and intensity of services is determined as a function of three key elasticity coefficients that influence the demand for health care:

1) **Income-technology elasticity**, which represents the marginal increase in demand for health care and new medical technologies in response to growth in income. The income-technology elasticity is estimated at 1.6 on average for the historical period from 1980 through 2002. It exhibits a declining trend over time, and is projected to reach 1.4 by 2016. This estimate is based on cross-country comparisons of the relationship of health spending and GDP growth for member countries in the Organization for Economic Co-operation and Development (OECD). A similar elasticity estimate was found using U.S.-specific time-series data.

In the 2018 Trustees Report it is assumed that the elasticity for the 25th year of the projection period (2042) is 1.26 and declines at a slowing pace to reach 1.08 by the end of the 75-year projection period (2092). This assumption implies that, as health care continues to consume a greater proportion of income, the marginal demand for additional spending on health care and new medical technologies will lessen. Ultimately, health care spending, including access to new technologies, is assumed to become a “normal good,” rather than a “superior good.” As medical care consumption requires a steadily increasing

5A third factor, the level of provider profit margins, is assumed to remain unchanged over the long run.

6Resource-based productivity is defined as the real value of provider goods and services divided by the real value of the resources (inputs) used to produce the goods and services, where price changes are measured across constant products—that is, defined health services with a constant mix of inputs. Resource-based productivity is used for this decomposition, rather than outcomes-based productivity (which incorporates the estimated value of improvements in health resulting from the services) because Medicare and most other payers reimburse providers based on their resource use.

8 The elasticity was estimated based on OECD data for 1970-2012 using rolling 21-year sample intervals to evaluate the trend in the parameter over time. For additional detail, please see Appendix A.
share of total income, demand for additional medical care at the margin is likely to taper off.

2) **Medical price elasticity**, which reflects the sensitivity of patients and purchasers in consuming health care to rising prices for medical care in relation to all other goods. The assumption for this measure is premised on a decomposition of the price elasticity to capture the increasing sensitivity of demand for health care to price in response to a rising share of income accounted for by health care. Based on these considerations, the price elasticity is estimated at -0.52 in the 25th year of the projection (2042) and follows a non-linear path until it reaches -0.59 by the end of the 75-year projection period (2092).

3) **Insurance elasticity**, which reflects the change in demand for medical care as the level of insurance coverage changes. Based on the RAND Health Insurance Experiment, this elasticity is estimated at -0.2, reflecting the change in demand for health care as the average coinsurance rate changes. For the 2018 Report of the Trustees, the insurance elasticity is assumed to be unchanged over the long-range projection period at -0.2.

Additionally, the content of the insurance coverage is assumed to be unchanged over the long run in order to maintain consistency with a Medicare benefit package that is unaltered.

Based on the year-by-year growth rates determined from the FCG model, age-gender adjusted per capita national health spending is projected to grow at a rate of GDP plus 0.8 percent (or 4.7 percent) for 2042, gradually declining to GDP plus 0.5 percent by 2092 (or 4.3 percent).

Current Law Medicare Spending

The Trustees have assumed since 2001 that it is reasonable to expect over the long range that the non-demographic drivers of growth in health spending will be similar for the overall health sector and for the Medicare program. This view was affirmed by the 2010-2011 Medicare Technical Review Panel, which recommended use of the same long-range assumptions for the increase in the volume and intensity of health care services for the total health sector and for Medicare, and reaffirmed by the 2016-2017 Medicare Technical Review Panel. Therefore, the overall health sector long-range cost growth assumptions for volume and intensity are used as the starting point for developing the Medicare-specific assumptions under current law.

Prior to the ACA, Medicare payment rates for most non-physician provider categories were updated annually by the increase in providers’ input prices for the market basket of employee wages and benefits, facility costs, medical supplies, energy and utility costs, professional liability insurance, and other inputs needed to produce the health care goods and services. To the extent that health care providers can improve their productivity each year, their net costs of production

9 This decomposition of the price elasticity is based on the Slutsky equation (see Silberberg, Eugene, *The Structure of Economics: A Mathematical Analysis*, McGraw-Hill, 2000.) The relationship between the price elasticity and the health share of GDP is estimated iteratively on a year-by-year basis to maintain internal consistency between the price elasticity and the health share of GDP.

(other things being equal) will increase more slowly than their input prices. Accordingly, since most Medicare price updates prior to the ACA were equal to the increase in providers’ input prices, Medicare costs per beneficiary would increase somewhat faster than for the health sector overall. Because the market basket increase was assumed to be 3.4 percent annually, Medicare payments grew about 0.4 percent greater than the net price increase of 3.0 percent per year described above for the total health sector. The ACA requires that many of these Medicare payment updates be reduced by the 10-year moving average increase in private, non-farm business multifactor productivity, which the Trustees assume will be 1.1 percent per year over the long range. The different statutory provisions for updating payment rates require the development of separate long-range Medicare cost growth assumptions for four categories of health care providers:

(i) All HI, and some SMI Part B, services that are updated annually by provider input price increases less the increase in economy-wide productivity.

Combining the assumed market basket increase of 3.4 percent with the estimate of economy-wide multifactor productivity, the statutory price update for these services is 2.3 percent per year over the long-range projection period. The initial projected increase in the volume and intensity of these Medicare services is assumed to be equivalent to the average projected growth in the volume and intensity of services for the overall health sector. The Trustees believe that the use of a common baseline rate of volume and intensity growth is reasonable, as there would be only a small likelihood that one part of the health sector could continue to grow indefinitely at significantly faster rates of growth than do other parts.

Additionally, the Trustees assume that the growth in Medicare payment rates under current law will reduce the volume and intensity growth of these services by 0.1 percent per year relative to the assumption from the factors model. The Trustees’ assumption is also based on recommendations by both the 2010–2011 and the 2016–2017 Medicare Technical Review Panel, which concluded that there would likely be a small net negative impact on volume and intensity growth due to reduced incentives to develop new technologies, provider exits, and the impact of greater bundling of services for payment purposes.\(^\text{12}\) For new technology that leads to new services, the ACA will result in lower fees than would otherwise be the case, and providers will be less likely to adopt new services and innovations, thereby lowering the demand for, and intensity of, the medical care provided. Regarding provider exits, as fee-for-service fees decline relative to the pre-ACA levels, facilities of marginal profitability are likely to exit the Medicare market, reducing capacity and volume. This change could also cause a more bifurcated health system to evolve in which only providers who can operate profitably under Medicare offer services to Medicare beneficiaries, with a tendency to provide only the more basic services not associated with new medical technologies. Finally, the innovations being tested under the ACA, such as bundled payments or accountable care organizations, could reduce incentives to adopt new technologies for those participating in these programs and/or could contribute to greater efforts to avoid services of limited or no value within the service bundle.

\(^{12}\) Other factors, such as reduced beneficiary cost-sharing requirements, would tend to increase the volume and intensity of services. The assumption of −0.1 percent reflects the Technical Panel’s assessment that the overall impact would be a small net decrease in volume and intensity growth.
Reflecting all of these considerations, the year-by-year long-range cost growth assumption for these HI and SMI Part B services starts at 3.9 percent in 2042, or GDP plus 0.0 percent, and gradually declines to 3.5 percent by 2092, or GDP minus 0.3 percent.

(ii) **Physician services**

MACRA specifies physician payment updates with new incentives that replace payments previously determined by the sustainable growth rate (SGR). Payments are assumed to increase by 0.75 percent per year over the long run for those physicians participating in alternative payment models (APMs) and 0.25 percent per year for those assumed to be participating in the merit-based incentive payment systems (MIPS). The Trustees assume that the rate of per beneficiary physician volume and intensity growth is based on the spending growth from the FCG model and the price of physician services as measured by the Medicare Economic Index (MEI). The year-by-year growth rates for physician payments are assumed to be 3.6 percent in 2042, or GDP minus 0.3 percent, declining to 2.8 percent in 2092, or GDP minus 1.0 percent.

(iii) **Certain SMI Part B services that are updated annually by the CPI increase less the increase in productivity.**

Such services include durable medical equipment, care at ambulatory surgical centers, ambulance services, and medical supplies, which are updated by the CPI and affected by the ACA productivity adjustment. For these services, the Trustees initially assume that the rate of per beneficiary volume and intensity growth is equivalent to that derived for the overall health sector using the factors model. This volume and intensity growth is assumed to be reduced by 0.1 percent per year to reflect the ACA impact, as described above. The post-ACA volume and intensity assumption is combined with the long-range CPI assumption (2.6 percent) minus the productivity factor (1.1 percent) to produce a long-range growth assumption for these SMI Part B services. The corresponding year-by-year growth rates are 3.1 percent in 2042, or GDP minus 0.8 percent, gradually declining to 2.7 percent in 2092, or GDP minus 1.1 percent.

(iv) **All other Medicare services, for which payments are established based on market processes, such as prescription drugs provided through Part D and the remaining Part B services.**

The Trustees assume that per beneficiary outlays for these other Part B services, which constitute about 17 percent of total Part B expenditures in 2026, and for all Part D services grow at the same rate as the overall health sector as determined from the factors model. These services are assumed to grow similarly because their payment updates are determined by market forces. The year-by-year growth rates are 4.7 percent in 2042, or GDP plus 0.8 percent, gradually declining to 4.3 percent by 2092, or GDP plus 0.5 percent.

After combining the assumed rates of growth from the four categories of Medicare Part B services described above, the weighted average growth rate for Part B is 3.6 percent per year for the last 50 years of the projection period, or “GDP minus 0.3 percent,” on average. When Parts A, B, and D are combined, the weighted average growth rate for Medicare is 3.8 percent over this same period. For each of Parts A, B, and D, the assumed growth rates for years 11 through 25 of the projection period are set by interpolating between the rate at the end of the short-range projection period (2027) and the rate at the start of the long-range period described above (2042).
Chart 3 provides a visual presentation of the year-by-year excess cost growth for Medicare Part A, Part B, and Part D under current law over the last 65 years of the projection period (2028-2092), including the 15-year transition of excess cost growth to their starting long-range values in 2042 together with their gradually declining path thereafter. During the transition, Part A and Part B growth is not perfectly linear because the projected values of economy-wide multifactor productivity vary somewhat from year to year.

After 2042, the downward slopes of the Part A, Part B and Part D excess cost growth are similar, reflecting the similar income-technology and price elasticities. Part D nevertheless continues at a higher level because it is exempt from ACA-mandated annual payment reductions and MACRA provisions to which the other subparts are subject.

Chart 3—Medicare Projected Excess Cost Growth
Current Law
2027-2092

Source: Centers for Medicare and Medicaid Services, Office of the Actuary.

NOTE: An excess cost growth is the rate of change in per enrollee costs relative to the growth in per capita GDP. The chart displays projected long-term excess cost growth for Medicare Subparts A, B, and D under the current law. Under this scenario each of the subparts has its own unique series of excess cost growth through the end of the 75-year projection horizon due to the different applicable current law payment provisions. Excess cost growth displayed here do not include additional spending changes attributable to factors such as age and gender composition of the Medicare population.

The Trustees Report cautions that “In view of these issues with provider payment rates, the Trustees note that the actual future costs for Medicare could exceed those shown in this report.” To help illustrate the level of Medicare costs that could result if these elements of current law are
overridden, the Trustees asked the Office of the Actuary to prepare projections based on a hypothetical alternative. These projections are shown in the 2018 Trustees Report and in a supplementary memorandum by the Office of the Actuary. The illustrative alternative projection is based on the assumption that the economy-wide productivity adjustments to Medicare payment rates would transition from current law to the payment updates assumed for private health plans (which reflect an assumption of 0.4 percent annual productivity growth) over the period 2028 to 2042. Additionally, the illustrative alternative assumes that, starting in 2028, physician payments transition from current law to the MEI increase of 2.2 percent beginning in 2042 and that the 5-percent bonuses for qualifying physicians in advanced alternative payment models and the $500 million in additional payments for physicians in the merit-based incentive payment system will continue after 2025. Readers should not infer from this any endorsement of this theoretical alternative to current law by the Trustees, CMS, or the Office of the Actuary, but concern about the long-term feasibility of the adjustments makes it advisable to consider what the state of the world might look like if they should prove infeasible.

Chart 4 shows the assumed year-by-year excess cost growth for Medicare Part A, Part B, and Part D over the last 65 years of the long-range projection period for the illustrative alternative Medicare projection. Under this illustration, per beneficiary cost growth for most of Medicare is assumed to transition from their 2028 values to an approximately common set of growth rates based on the FCG model for overall per capita national health expenditures (before demographic adjustments).

14 The one exception is Part B services updated by the CPI, which are assumed to have the same volume and intensity growth as NHE but a lower price update than assumed for NHE since those services are not updated based on the market basket concept.
Chart 4—Medicare Projected Excess Cost Growth
Illustrative Alternative
2027-2092

Source: Centers for Medicare and Medicaid Services, Office of the Actuary.

NOTE: An excess cost growth is the rate of change in per enrollee costs relative to the growth in per capita GDP. The chart displays projected long-term excess cost growth for Medicare Subparts A, B, and D under the illustrative alternative. Under this scenario each of the subparts converges to a similar rate of excess cost growth through the end of the 75-year projection horizon. Excess cost growth displayed here do not include additional spending changes attributable to factors such as age and gender composition of the Medicare population.

The excess cost growth assumptions are unchanged under the illustrative alternative for Part D. For Parts A and B, however, the growth rates are higher than assumed under current law throughout the final 65 years of the projection.
History of the Medicare Trustees Long-Range Health Cost Growth Assumptions

Officially convened Technical Panels of distinguished economists and actuaries have reviewed the long-range Medicare projection and reporting methods on five different occasions—in 1991, 2000, 2004, 2010-2011, and 2016-2017. Accordingly, the years 1991, 2000, 2004, 2010-2011, and 2016-2017 serve as milestones in the evolution of methods that are employed to project Medicare over a 75-year reporting period. In addition, the projection assumptions and methods have reflected annual reviews and reassessments by the Office of the Actuary and the staffs of the Board of Trustees. From time to time, other events have affected the projections, such as the development of *Actuarial Standard of Practice No. 32, Social Insurance* and the requirements of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA) for the Medicare Trustees Report to compare projected growth rates for Medicare to those for aggregate national health expenditures, private health insurance expenditures, and GDP. This section traces the evolution of projection methods through regular and responsible consultation with recognized subject matter experts and through thoughtful implementation of advice received in light of the reporting responsibilities that exist.

A. Stage I: Basic Structure of Long-Term Projections

The first Trustees Reports for Medicare, issued in 1966, provided 25-year projections for the Hospital Insurance (HI) trust fund and only 3-year projections for the Supplementary Medical Insurance (SMI) trust fund. No longer-range projections of any kind were made by the Medicare Trustees before 1983, although the Office of the Actuary prepared 75-year projections from time to time for special analyses. In 1983, the Board of Trustees decided to report the substantial increase in HI costs that could reasonably be expected for Medicare as a result of demographic changes alone—in particular, the retirement and subsequent aging of the post-World War II “baby boom” generation. Since existing research still had little to say concerning the likely long-term path of health care spending as it might be affected by non-demographic factors, it was determined that initial long-term projections would not explicitly take such factors into account. Accordingly, starting in 1983 long-range HI projections were made under the assumption that long-range costs per unit of service would increase at the rate of average hourly earnings. No long-range projections for SMI were reported by the Medicare Trustees until after the recommendations of the 1991 Medicare Technical Review Panel.

16 Available at http://www.actuarialstandardsboard.org/pdf/asops/asop032_149.pdf.

The 1991 Medicare Technical Review Panel was the first formally convened body to consider long-range projection methods to be used in the Medicare Trustees Reports. A fundamental theme of the panel’s report is coordination of projection methods for HI and SMI in order to facilitate a combination of the results into a comprehensive understanding of the status of the entire Medicare program. The use of a 75-year projection period was affirmed because, for the average person entering the workforce in any reporting year, this period of time will encompass his/her years as a contributor to the HI fund and as a Medicare beneficiary. The panel thus saw a 75-year reporting horizon as a reasonable period of analysis for evaluating the financial ability of the program to deliver benefits promised to beneficiaries from the inception of their working lives. The panel found the use of short-term projections based on trends that are gradually tapered to meet long-run growth assumptions to be reasonable. The panel cautiously endorsed the long-range assumption that average HI payments per unit of service would grow at the same rate as average hourly earnings and expressed similar approval for a long-range assumption that per enrollee SMI costs would grow at the same rate as per capita GDP. With regard to each long-run assumption, the panel recommended that regular monitoring for continuing plausibility should occur.

The approach to long-range projections described in the report of the 1991 Technical Panel was reflected in succeeding Medicare Trustees Reports up to and including the HI and SMI reports for 2000. Consistent with the recommendation to coordinate the HI and SMI projections, the annual reports starting in 1994 show 75-year projections of HI and SMI as percentages of GDP. The nature of the long-range assumptions meant that HI and SMI would grow more rapidly as a percentage of GDP in the first 25 years of the projection period than in the last 50 years. In the case of HI, the assumption that increases in per unit of service costs would equal the rate of increase of average hourly earnings in the last 50 years of the projection period meant that costs would be relatively stable in the long run. Other long-range assumptions related to demographics still allowed for substantial growth in HI’s share of GDP. In the case of SMI, the long-range assumption meant that growth as a share of GDP would largely halt after the first 25 years, except to the degree that changing demographics would continue to boost SMI’s share of GDP.

Although the 1991 Technical Panel had not explicitly discussed implementation of an excess cost growth method to model long-range Medicare costs, the elements of the method are discernable in the panel report and in the subsequent reports of the Medicare Trustees. The long-range assumption for SMI was effectually a “GDP+0” assumption that was substantially below historic rates of SMI growth, a fact that had prompted the Technical Panel to recommend regular review of the assumption and that evoked regular cautionary commentary in Trustees Reports during the 1992-2000 period. And even though the long-range assumption for the HI growth rate was not directly related to GDP, the idea of connecting HI’s growth to that of a macro-economically

18 Before 2002 there was an annual Trustees Report for HI and another for SMI; since 2002 there has been a single annual Trustees Report that includes all parts of the Medicare program.

20 The resulting projection pattern of HI growth versus SMI growth as a share of GDP is illustrated in Table III.B.1 of the 2000 HI Trustees Report.
important aggregate was present. On these foundations, moving to an explicit excess growth method for long-range projections for all parts of the Medicare program would prove to be a natural next step.

B. Stage II: Addition of the GDP+1 Projection Method

The 2000 Medicare Technical Review Panel deliberated extensively about the long-term rate of health care cost growth and ultimately recommended an assumption of tying Medicare’s long-range cost growth to the increase in per capita GDP plus 1 percentage point (GDP+1), exclusive of age-gender effects, for both HI and SMI. The panel viewed its mission as one of delivering credible and usable assumptions concerning an inherently uncertain issue. The conceptual innovation was in seeing the long-range assumption for both HI and SMI as explicitly a question of the rate of excess cost growth relative to GDP under current law. Within the conceptual framework, the practical task for the panel became a matter of arriving at a consensus for the value to assign to the key projection variable that had been defined.

To achieve a consensus, the experts considered many factors that are thoroughly documented in their written report. Most telling for the panel were long-term time-series expenditure trends when considered in light of causal evidence. Long-term time-series evidence showed that in any multi-year time period examined by the Technical Panel, real per capita health expenditures had never grown at a rate less than 1 percent in excess of real per capita GDP growth. As for determinants of expenditure growth, the panel looked to aggregate and micro-level health economics studies, which pointed to technological change as the primary driver of real growth in health expenditures. The panel report concluded that technological change alone would account for a percentage point of real growth in excess of the rate of real GDP growth.

Also considered by the panel were factors that might in the future slow or accelerate the rate of excess medical expenditure growth through the diffusion of technological change. For example, the spread of managed care in the 1990s was seen as a short-term aberration in a long period of excess cost growth relative to GDP growth rates and, thus, as unlikely to have an enduring effect. The experts did not find evidence for a long-term differential among types of payers that would affect their conclusion about the long-term excess growth rate. The panel also noted that other forecasters showed a range of excess growth in health expenditures of between 0.8 to 1.5 percentage points, with most of the studies congregating around a value of 1 percentage point.

Finally, the panel’s report discussed the sustainability of excess cost growth of 1 percent for the duration of a 75-year projection period. Concerning this issue, the report noted that excess growth of 1 percent per year over 75 years would lead to a health sector of unprecedented size as a share of the economy, but since such a growth pattern would still be consistent with increases in the absolute level of real consumption for non-health expenditure, the panel saw little grounds for expecting consumers as a group to reach some point of satiety concerning health expenditures.

Based upon their thorough review of relevant factors, the 2000 Technical Panel unanimously recommended adoption of a long-term excess cost assumption of a full percentage point of excess

growth in per enrollee HI and SMI costs above the rate of growth of per capita GDP, exclusive of age-gender effects. Their recommendation was supported by the Office of the Actuary in its assumption recommendations in the Fall of 2000 to the last Medicare Board of Trustees under the Clinton Administration and was adopted formally by that Board. With the changes in Board membership under the incoming Bush Administration, the Office of the Actuary again recommended the GDP + 1 long-range growth assumption, and it was again adopted by the new Board and implemented in the 2001 Medicare Trustees Reports. As was to be expected, the change to a more costly long-term assumption had a substantial effect on the reported financial status of the Medicare program. In 2001, the Medicare share of GDP at the end of 75 years was projected at 8.49 percent, as compared with 5.28 percent projected in the 2000 Report. The GDP+1 assumption as applied in the 2001 HI and SMI Trustees Reports was also used in the annual reports issued from 2002 through 2005.

C. Phase III: Refinement of the GDP+1 Projection Method

A new Medicare Technical Panel was convened in 2004; it reviewed and reaffirmed the long-term GDP+1 assumption as implemented by the Office of the Actuary, but also made suggestions for research into long-term projection methods. In addition, the MMA required that the Medicare Trustees compare past and projected Medicare cost growth rates with annual rates of growth in GDP, private health insurance costs, national health expenditures, and other appropriate measures. Together, the changes in statutory reporting requirements and the suggestions of the 2004 Technical Panel provided impetus for refinement of how the GDP+1 assumption was implemented.

The 2004 Technical Panel considered the analysis of excess cost trends that had appeared in the report of the 2000 Technical Panel and found that analysis to be persuasive. The 2004 panel was comfortable with the existing framework and concluded that the existing GDP+1 long-range assumption was “within the range of the reasonable assumptions, given the limits of current knowledge.” However, the panel also found future promise in extramural general equilibrium modeling projects already in progress under the supervision and sponsorship of the Office of the Actuary, and accordingly the experts encouraged the pursuit of additional research to build insight into the behavioral dynamics underlying health expenditure growth.

The Office of the Actuary eventually determined that yearly expected excess cost rates for the overall health sector, exclusive of age-gender effects, as derived from the constrained solution of a

22 By law, the members of the Medicare (and Social Security) Board of Trustees are the Secretary of the Treasury, Secretary of Labor, Secretary of Health and Human Services, Commissioner of Social Security, and two members representing the public. Dr. John L. Palmer and Dr. Thomas R. Saving served as Public Trustees on both the 2000 and 2001 Boards of Trustees (as well as subsequent Boards through 2007).

24 The recommendation to explore many possible lines of insight with simple models was reiterated several years later by members of an informal advisory group of distinguished economists and actuaries convened by the Office of the Actuary in 2007.
A stylized macroeconomic model—the OACT computable general equilibrium (CGE) model—could be used as a tool for improving the long-range Medicare cost growth assumptions and for complying with new reporting responsibilities. A review of this approach by independent health economists convened for this purpose confirmed this finding, and the OACT CGE model was adopted as a tool in the production of long-range estimates starting with the 2006 Medicare Trustees Report.

The CGE model was used solely as a tool for developing a reasonable series of downward-trending, year-by-year health care cost growth rates that were consistent with the constant GDP+1 assumption used previously. A thorough review of the CGE model determined that without exogenous identifying assumptions about the average rate of cost growth the model could not be used as an independent forecasting tool. However, it made sense to use it as a tool to translate the basic GDP+1 cost growth assumption into a financially equivalent series of smoothly decelerating cost growth rates more consistent with a notion of diminishing marginal utility of health care for a representative consumer as the budget share for health care increased.

D. Phase IV: Affordable Care Act

The enactment of the ACA in March 2010 required that several new provisions of the law be taken into account when developing long-range Medicare projections. Most notably, the ACA modifies the annual increases in Medicare payment rates for most categories of health service providers by reducing them for 2011 and later by the 10-year moving average increase in private, non-farm business multifactor productivity.

For the 2010 and 2011 Medicare Trustees Reports, the Trustees first assumed a “baseline” set of pre-ACA, long-range Medicare cost growth rates, using the methods described above regarding the refinement of the GDP+1 method. This approach included continued use of the OACT CGE model to determine the year-by-year growth rates consistent with an underlying average rate of GDP plus 1 percent. These baseline long-range Medicare cost growth assumptions were then altered to incorporate the payment adjustments associated with the ACA. This adjustment affects all HI (Part A) providers; as a result, on average, the resulting long-range growth assumption for HI was the increase in per capita GDP plus 1 percent, minus the productivity factor (estimated at 1.1 percent per year). For SMI Part B, the productivity adjustment affects certain provider categories—for example, outpatient hospitals, ambulatory surgical centers, diagnostic laboratories, and most other non-physician services. These services had the same assumed long-range growth rate as did HI services. The sustainable growth rate formula in current law governed increases in average physician expenditures per beneficiary, so that they would increase at approximately the rate of per capita GDP growth. The remaining Part B services, and all Part D outlays, were not affected by the SGR or the ACA productivity adjustments and had an assumed average growth rate of per capita GDP plus 1 percent.

25 The detailed structure of the model, but not how it was used in the Trustees Reports, is described in “Projecting long-term medical spending growth,” by Christine Borger, Thomas F. Rutherford, and Gregory Y. Won, Journal of Health Economics, Volume 27, Issue 1, pages 69-88 (2008).

26 “Multifactor productivity” is a measure of real output per combined unit of labor and capital, reflecting the contributions of all factors of production.
In December 2011, the panel members unanimously recommended a new approach that built off of the longstanding “GDP plus 1 percent” assumption while incorporating several key refinements. Specifically, the panel recommended use of two separate means of establishing long-range growth rates:

- The first approach is a refinement to the traditional “GDP plus 1 percent” growth assumption that better accounts for the level of payment rate updates for Medicare (prior to the ACA) compared to private health insurance and other payers of health care in the U.S. For applicable provider categories—those with provider payment updates based on input price increases, prior to the ACA—the refinement results in an increase in the long-range pre-ACA “baseline” cost growth assumption for Medicare to “GDP plus 1.4 percentage points.” The corresponding assumed average growth rate for aggregate national health expenditures continues to be “GDP plus 1 percentage point.”

- The second approach recommended by the Technical Panel is the “factors contributing to growth” (FCG) model developed by the Office of the Actuary at CMS as a possible replacement for the existing process. This model also builds upon the key considerations used in establishing the earlier “GDP plus 1 percent” assumption, together with subsequent refinements in the analysis of growth factors, additional years of data on national health expenditures available since the 2000 Technical Panel’s deliberations, and use of projected trends in the model’s key factors. The model is based on economic research that decomposes health spending growth into its major drivers—income growth, relative medical price inflation, insurance coverage, and a residual factor that primarily reflects the impact of technological development.

For the 2012 Trustees Report, the long-range Medicare spending assumption was determined as (i) a pre-ACA baseline assumption for the average ultimate Medicare growth rate using the updated “GDP plus 1.4 percent” and (ii) the FCG model to create the specific year-by-year declining growth rates during the last 50 years of the projection. These baseline assumptions were then altered by the payment adjustments in the ACA.

For the 2013 and 2014 Trustees Reports, the long-range Medicare spending assumption was determined based on (i) the volume and intensity assumptions derived from the FCG model, (ii) the impacts on Medicare volume and intensity from the ACA, as recommended by the Technical Panel, and (iii) the Medicare payment updates specified in current law. For the 2014 Report, an SGR override was assumed under the projected baseline scenario. For the 2015-2017 Reports, the passage of MACRA with a new payment system for Medicare physician services prompted a return to a current law perspective and a recalibration of certain FCG parameters was implemented. Finally, in the 2018 Report, the Bipartisan Budget Act was reflected, with the most

27 It is important to recognize that GDP+1.4 is prior to any multifactor productivity adjustment to Medicare administrative payment systems as required by update provisions of ACA; the GDP+1 assumption for NHE is consistent with negotiated provider payment rate updates that are net of provider productivity gains deemed to be attainable across the health sector.

notable impact on the long-range projections the elimination of the Independent Payment Advisory Board.

E. Phase V: Re-Affirmation of Methods by 2016-2017 Technical Panel

In August, 2016 a Medicare Technical Panel convened, once again charged by the Trustees to perform a fundamental review of long-range expenditure projection methods, including whether uncertainty about sustainability of current law payment provisions continue to warrant presentation of an Illustrative Alternative scenario as part of the annual Report of the Medicare Trustees. The panel executed its assigned role over the next year and submitted a Final Report in September, 2017. The panel largely affirmed long-range projections methods and made a number of recommendations for ongoing research concerning issues that, depending on how they develop, could warrant modification of long-range assumptions.

Noteworthy specific findings of the panel included:

- Affirmed the assumptions used in the long-range projections were reasonable and affirmed the current approach and length of the transition from projected short-range cost growth rates to long-range cost growth assumptions were reasonable.

- Affirmed continued presentation of an Illustrative Alternative (IAS) scenario and recommended incorporation of minor adjustments in the manner in which transitions to long-run cost growth rates are implemented in the IAS (discussed earlier in this memorandum) while also recommending ongoing research regarding the sustainability of the ACA-created system of Medicare provider payment updates.

- Recommended research concerning i) spillover effects on Fee-for-Service (FFS) Medicare cost growth from continued growth of Medicare Advantage (MA) enrollments; ii) possible cost-savings from factor substitution such as drug utilization that reduces or even obviates the need for inpatient episodes or outpatient procedures; iii) whether a time-to-death framework could improve modeling of age-effects on aggregate Medicare spending; iv) monitoring whether shifts in settings for end of life care warrant adjustment in assumptions of utilization intensity across alternative settings (for example, inpatient, outpatient, hospice.); and v) evaluation of alternative methods for measuring and tracking volume and intensity of medical services.

As noted elsewhere in this memorandum in response to the recommendations of the panel, the Office of the Actuary has incorporated recommended changes in the production of the IAS and has initiated steps follow-up on elements of the panel’s research recommendations.

Evaluation of the Long-Range Cost Growth Assumptions

In this section the reasonableness of the key long-range assumptions and the projections that result are discussed.

A. The NHE Projection Baseline

A core assumption underlying the OACT long-range health expenditure projections continues to be that net per capita health expenditure growth for the U.S. health sector as a whole, exclusive of age-gender effects, would experience a substantial slowdown from historic rates of excess cost growth. Using the FCG model, the current assumption is that excess cost growth would be GDP plus 0.8 percent for 2042, gradually declining to GDP plus 0.5 percent by 2092. The questions to be considered here concern the reasonableness of the assumptions inherent in the NHE projection that imply a long-term slowdown in excess cost growth.

In approaching these questions, it is worth remembering that the term “excess cost growth” as used by the Office of the Actuary is meant to be a descriptive rather than a normative term. In other words, the term does not mean that there is anything intrinsically bad or inherently unreasonable with faster growth for the health sector than for the rest of the U.S. economy. But, as explained earlier in this memorandum, long-run historic trends in excess cost growth rates for the health sector are ultimately unsustainable. The appropriate question regarding a long-range projection is therefore what state of the world would be expected to prevail under a reasonable set of assumptions about the evolution of the health sector.

The long-range assumptions about excess cost growth, together with demographic projections of population size and age distribution, determine the magnitudes of the long-range projections. Even if the long-range baseline assumptions are believed to be within the range of the reasonable, it is fair to consider the degree to which the outputs are reasonable and credible.

Under the full illustrative alternative scenario, the health sector share of GDP is expected to increase from 17.9 percent in 2016 to as much as 34.5 percent of GDP in 2092 (Chart 5). Such magnitudes have no historical precedent and are even more extraordinary when it is considered that these increased economic shares would be from an economy that, in real per capita terms, is projected to be roughly three times the size that it is today.
It is fair to question, as some researchers have, whether a future health sector of this size would be macro-economically sustainable to the end of the 75-year projection horizon. When long-range scenarios have been run by the INFORUM group at the University of Maryland, with their detailed, bottom-up macroeconomic model (Long-Run Interindustry Forecasting Tool, or LIFT), maintenance of current-law benefit levels has been found sustainable in the sense that some real growth in the non-health sectors of the economy would still be feasible. But that analysis purposely ignored macroeconomic “feedback effects” on investment, interest rates, and labor supply from the increases in tax rates and/or government debt levels that would be needed to finance Medicare and Medicaid. The more significant those macroeconomic effects are, the more likely a slowdown in Medicare excess cost growth even below the long-range assumption.

32 When such factors were reflected in LIFT model runs, the macroeconomic impacts of tax increases and increased federal borrowing resulted in long-range economic growth that was substantially slower than assumed in the Trustees Reports.
Distributional issues are also likely to emerge as Medicare Part B premiums and cost sharing start to consume 50 percent or more of monthly Social Security benefits for some beneficiaries.

A National Academy of Sciences committee has also issued an important report about alternative choices that the nation faces in order to make its system of entitlement programs, including Medicare, fiscally sustainable.

Various alternative scenarios, including scenarios involving rates of growth less than GDP+1, are considered to underscore that there are choices to be made to decide the nation's future, but no position is taken concerning which scenario would be optimal.

Abundant reasons thus exist to question whether the long-range NHE projection baseline would itself in fact be sustainable. Yet even though the sources cited here raise pertinent practical questions about the ultimate sustainability of this current law scenario, none of them provides a reliable basis for adopting a lower baseline. What is more, the persistence of high rates of excess cost growth over history, despite previous legislative initiatives aimed at reducing it, is another important inducement to caution in the adoption of a projection baseline. The NHE projections are undoubtedly more realistic than assuming excess cost growth continues unabated at historic trend rates, but the results are still large enough to underscore the need for effective policy intervention if the growth of the U.S. health sector relative to the rest of the U.S. economy is ever to be stabilized.

B. The Relationship between NHE and Medicare Projections under Current Law

Recent Medicare Technical Review Panels have in one way or another been comfortable assuming that average growth over the long-range projection period would be consistent with slowing excess cost growth given that historic rates are simply unsustainable. However, the panels have provided little analysis of specific mechanisms that might cause a slowdown of excess cost growth. For example, the 2000 Technical Panel was impressed by evidence that an excess cost growth rate of 1 percent (GDP+1) would still be consistent with maintaining some positive real growth in an absolute sense in other sectors of the economy. Maintenance of positive real growth in per capita non-health expenditures might therefore be interpreted as defining an outer limit on social willingness to pay for additional health care.

How the U.S. economy in the absence of major policy interventions would in fact move from a historic excess cost growth rate of GDP+2 remains a largely unsettled question. The existing Medicare program and private health insurance plans more generally contain numerous features by which consumer preferences for slower expansion in health care could eventually reduce the rate.

35 For instance, the Sustainable Growth Rate system that was supposed to control the growth of Medicare physician fees was overridden by Congress nearly every year.

36 Even with zero or slightly negative excess cost growth, as in the current law Medicare projections, the Medicare program will continue to grow as a share of the U.S. economy as long as the share of the population eligible for Medicare benefits is increasing relative to the overall population.
of excess cost growth in line with the expectations of the Technical Review Panels, including the most recent panel.

By way of illustration, consider the potential effects of cost-sharing provisions of current-law Medicare, which are more substantial and more extensive than is often recognized. At present, the great majority of Medicare beneficiaries (roughly 90 percent) have supplemental health insurance coverage that helps insure against Medicare’s point-of-service cost-sharing obligations. Such coverage is provided through supplemental private “Medigap” insurance programs paid for by the beneficiaries themselves, participation in private Medicare Advantage coordinated care plans, retiree health plans provided by their former employers, or the Medicaid program. As the costs of comprehensive supplemental coverage rise relative to the growth of personal income and business income, the comprehensiveness and the prevalence of such coverage are likely to diminish, and point-of-service cost sharing faced by Medicare beneficiaries is likely to become more frequent and more burdensome. Accordingly, as time passes, beneficiaries may choose more frequently not to seek health care perceived by them to be of limited marginal value or to decline health care offered by providers.

That cost sharing can have substantial effects on demand for health care is an established proposition. The results of the well-known RAND Health Insurance Experiment persuasively confirm that substantial effects on demand for health care arise from point-of-service cost obligations borne by patients. Moreover, an important recent study indicates that the scope of insurance coverage is likely to have had an even greater effect on health sector size than could be identified by the study design used in the original RAND Health Insurance Experiment. Further consumption-side brakes on Medicare as excess costs accumulate might include decisions not to enroll in Medicare Part B or Part D. Such individuals would face even more substantial point-of-service obligations that would have significant effects on their access to health care.

Over the past few decades the apparent role of cost sharing in the finance of health care has diminished, mostly through the spread of public health insurance coverage and private pharmaceutical coverage plans. To some degree the perceived importance of cost-sharing may continue to decline due to further expansion of the share of the population covered by public programs like Medicaid. But OACT is persuaded that the role of cost sharing at the point of service for Medicare beneficiaries as well as the financial burden of Part B and Part D premiums

37 There is no provision in current law that would permit payment of full HI benefits after trust fund exhaustion. Since the purpose of the Medicare and Social Security Trustees Reports is to evaluate the adequacy of program financing, however, the Trustees have always made projections of (i) the benefits specified under current law (and the associated costs of administering the program) and (ii) the revenues specified under current law. The annual report then compares these two projections to evaluate whether financing is sufficient. Thus, the Trustees’ application of current law does not follow a strict interpretation of what would actually happen in the event of trust fund depletion; rather, it compares expenditure and income levels under the implicit assumption that full benefits would be paid. In practice, Congress has never allowed the HI trust fund to be exhausted, and it is highly likely that action would be forthcoming to prevent exhaustion at a future date.

will continue to increase, and absent policy interventions cost sharing effects in Medicare and in the rest of the health sector can be expected to grow.

Theory suggests that, as efficient methods of care become more widely diffused throughout the health sector, such methods would be applied by health care practitioners to patients, regardless of insurance plan. Cost-saving spillovers into Medicare from private sector initiatives that are focused on efficiency of treatment around best practices are another foreseeable brake on excess cost growth. Additionally, research confirms that increases in penetration rates for Medicare Advantage also reduce utilization and spending for traditional Medicare.40,41 It is also possible that Medicare itself could contribute to this kind of progress, resulting in cost savings that would spill over into private health plans as well. For example, efforts are currently underway at CMS to test the effectiveness of better integration of care through Accountable Care Organizations, patient-centered “medical homes,” shared savings programs and capitated plans for dual Medicare-Medicaid beneficiaries, and other approaches. Similarly, CMS is conducting demonstration programs for broader bundling of payments, reductions in unnecessary hospital readmissions and hospital-acquired conditions, etc. Innovations that are successful in reducing Medicare costs are very likely to be adopted in the private sector as well. Such institutional factors are incorporated into the expectations for growth in national health spending over the long run through the assumptions that underlie the Factors Model.42

It is also reasonable to expect that health care providers, under financial pressure from Medicare, Medicaid, and the private sector alike, may adopt new technological innovations more prudently than they have in the past. Drug and medical device manufacturers may focus greater attention on developing cost-reducing technology in the future, more akin to what has traditionally happened in other sectors of the economy.

These examples of “natural brakes” on health care spending are expected to contribute to a slowdown over the long run of excess cost growth even in the face of some foreseeable cost-increasing effects. For example, persons who do not have or who choose to forgo a private supplemental Medicare insurance policy may obtain extra coverage by enrolling in a Medicare Advantage (Medicare Part C) plan, whose government-paid premiums and “rebates” (at least currently) often exceed average per enrollee fee-for-service Medicare costs. To the degree that pharmaceutical coverage sponsored by former employers of Medicare beneficiaries becomes less available or less comprehensive, enrollment in the Medicare Part D plans may also grow, increasing total Medicare outlays. Also, if a disenrollment trend emerged for Part B or Part D, it could be mitigated for some by increased participation in Medicaid, including the “QMB,” “SLMB,” and “QI” options.

42For further discussion of these spillover effects and their incorporation into the long run expectations through the Factors Model, please see the Appendix A.
While there are natural brakes in the current health care system that are likely to slow excess NHE and Medicare cost growth, the “out-of-sample” nature of the health expenditure projection problem makes it especially difficult to project the magnitude and speed of a slowdown in the rate of excess cost growth. Given the current state of knowledge and the recommendations of distinguished panels of technical experts, OACT is satisfied that the current long-range assumption, which incorporates a gradual slowing of cost growth from historical trends, is a plausible and reasonable expression of trends likely to prevail under current law. A last attribute of the current methodology is the assumption of the same cost slowdown to all parts of the U.S. health sector.\footnote{How excess cost growth for Medicare under the illustrative alternative scenario and other parts of the health sector would slow is envisioned differently. For the privately insured, prices would be determined through the market process whereas for the Medicare alternative scenario prices would be set through the update process for the administrative payment systems.} OACT is skeptical that a sustained divergence in cost growth rates between Medicare and the rest of the U.S. health sector could prevail for long without the appearance of access to care issues.

C. Current Law and Illustrative Alternative Medicare Projections

The Annual Reports of the Medicare Trustees have presented materially-improved financial and actuarial statuses of the Medicare program since the enactment of the ACA. The projected insolvency date of the HI Trust Fund in the 2009 Trustees Report, the last report appearing under pre-ACA current law, was 2017. In the 2018 Trustees report the insolvency date is projected to be 2026. Projected growth in the size of the Medicare program as a share of total Gross Domestic Product (GDP) is substantially smaller than the share prior to the enactment of the ACA. The 2009 Trustees Report projected Medicare's GDP share in year 75 as 11.4 percent whereas the 2018 Trustees Report projects Medicare's GDP share in year 75 at 6.2 percent under current law, with a major reason for the substantial decline being the annual multifactor productivity adjustments introduced by the ACA. Chart 6 displays the projected long-run expenditures of the Medicare program as a share of GDP and as a share of aggregate national health expenditures, based on the current law projections in the 2018 Medicare Trustees Report. As a share of GDP, Medicare spending is projected to continue increasing until the late 2030s due to the combined effects of excess cost growth and enrollment increases, though mainly due to the impacts of increased enrollment. For the last 50 years of the projection the Medicare share of GDP is relatively stable, reflecting slower enrollment growth and assumed per enrollee cost growth rate that is near or below the per capita GDP growth rate. The convergence of per enrollee cost growth to something near or below the rate of per capita GDP growth mainly occurs because the growth in Medicare payment updates over this period are near the increases in the GDP deflator, as required by the ACA. As a share of NHE, however, Medicare spending under current law is projected to fall over the long-range as the assumed rate of per enrollee Medicare cost growth is less than assumed for per capita NHE. Again the main reason for this pattern is the Medicare payment updates, which are projected to increase at a slower rate than non-Medicare health price updates (volume and intensity is assumed to grow similarly for Medicare and non-Medicare).
As noted previously, there is substantial uncertainty concerning whether the ACA productivity adjustments and the physician payment updates under MACRA could be sustained into the long-run without affecting access to care by Medicare beneficiaries. Therefore, the Trustees also report a long-range projection based upon an illustrative alternative scenario in which adherence to the ACA and MACRA payment updates erode. Chart 7 displays projected long-run Medicare expenditures as a share of GDP and NHE under the illustrative alternative scenario.

Source: Centers for Medicare and Medicaid Services, Office of the Actuary.

NOTE: For Medicare Share of GDP historical data is used before 2017 and projections from 2017 forward. For Medicare Share of NHE historical data is used before 2017 and projections from 2017 forward.
As indicated in Chart 7, if the productivity adjustments and the MACRA physician payment updates were gradually phased beginning in 2028, then Medicare costs would continue to increase as a share of GDP throughout the long-range projection, reaching 8.9 percent by the end of the 75-year period, compared to 6.2 percent under current law. Similarly, as a share of NHE, Medicare costs would level off and stabilize as a share of overall NHE after 2035, rather than declining substantially.

D. Other Pertinent Considerations

The model used to develop the long-range projections does not explicitly include many of the variables that might affect the trajectory of expenditure growth in the health sector and in Medicare. To the degree that such variables affect expenditure levels (for example, institutional factors like managed care or population factors like the prevalence of obesity), they do so through the judgments of the experts who helped to formulate and validate the current assumption, which is best seen as an informed summary of expectations concerning the net effects of all relevant variables.

Another important source of uncertainty regarding the current long-range assumption is how quickly consumers would respond to the increased costs that they would eventually confront for insurance coverage and for copayments at points of service. If such responses emerged in the near
term, then the current baseline assumption might in retrospect be found to have been too high; if they unfolded in the more distant future, then the current baseline assumption might be found to have been too low. The same kind of uncertainty exists regarding the effects of other conceivable natural brakes on health expenditure growth. Such effects would broadly fall into the category of endogenous institutional change that we would expect to be captured in the Factors Model (additional discussion in Appendix A).

Actual long-range Medicare costs are virtually certain to differ from whatever is projected and, as this consideration of sources of variability would suggest, perhaps to a very significant degree. Such variation, however, is unlikely to be sufficient to alter the conclusion that the Medicare program faces serious and enduring financial challenges that will become worse the longer that they continue. OACT continues to engage in internal and external research projects aimed at improving the foundations of the long-range health expenditure cost growth assumptions.

Conclusion

The Medicare Trustees have statutory responsibility to report on the long-term financial and actuarial status of the Medicare program in the context of broader growth trends in the U.S. health sector. To discharge this responsibility, long-range spending projections must be made for both the overall health sector and Medicare, and those sets of projections must be appropriately interrelated. For the 2018 Trustees Report, the FCG model was used to determine the long-term growth trajectory of the U.S. health sector. Under the current law projection the long-range Medicare cost growth assumptions are implemented as the increases in the volume and intensity of health care services per person from the FCG model of total national health expenditures, adjusted by the expected impact on volume and intensity from the ACA, together with the Medicare-specific provider payment rate updates specified in current law, with further adjustments to incorporate demographic effects. Continuing uncertainty concerning the feasibility of certain elements of current law—the MACRA provision for physician payments and the permanent reductions in most other Medicare payment updates by the increase in economy-wide productivity—has prompted the Trustees to again provide an illustrative alternative projection whose growth trajectory is the same as for the health sector as a whole.

The long-range cost growth assumptions have evolved through regular processes of expert review, and improvements, refinements, and alternative approaches to the projection method continue to be considered. In their present form, the long-range assumptions lead to Medicare projections under current law and illustrative alternative scenarios that provide a sound basis for evaluating long-range fiscal challenges to the Medicare program.

Stephen K. Heffler, M.B.A.
Director, National Health Statistics Group

Todd G. Caldis, Ph.D, J.D.
Senior Economist

Sheila D. Smith, M.A.
Senior Economist

Gigi A. Cuckler, M.A., M.B.A.
Senior Economist
Appendix A: Factors Contributing to Growth (FCG) Model

The Office of the Actuary’s Factors Contributing to Growth (FCG) model is an accounting framework that is used to track the historical contribution of factors that drive national health expenditure growth and to develop projections of health care spending that are consistent with the evolution of these factors. The model relies on a wide range of empirical research as the basis for historical parameter estimates that reflect the sensitivity of health care spending growth to changes in each of the factors. Where the projected path for these parameters is expected to differ from historical patterns, the assumptions are adjusted to reflect the expected shift. These parameters are applied to projected growth in macroeconomic and health-care-specific variables to determine growth in national health spending over the long-term projection.

This appendix discusses the underlying structure of the FCG model. Next, it provides a detailed discussion of the historical derivation of the key parameters in the model, and presents the historical fit of the model from 1965-2016. Finally, this appendix discusses how the FCG model is used as the framework for developing long-range projections of national health spending growth that were used in the 2018 Trustees Report.

1. Factors Contributing to Growth (FCG) Model Structure

FCG model equation

There are five key factors that have been identified to influence growth in aggregate per capita growth in national health expenditures:44

- demographics (the impact of distributional shifts across age and gender cohorts),
- changes in insurance coverage,
- relative medical price inflation,
- changes in aggregate real per capita income,
- a residual factor attributed primarily to the development and diffusion of new medical technologies.45

45 While there are a large number of potential factors that can be expected to influence health spending levels, most cannot reasonably be assumed to influence growth rates over extended periods of time. A broad consensus holds that technological change is the most critical factor that generates growth in health care spending sustained at rates above what would be predicted based on other key factors contributing to growth.
These factors are used to develop the structure of the FCG model as shown in equation (1) below:

\[(1) \quad h_t = a_t + \varepsilon_y y_t + \varepsilon_i i_t + (1+\varepsilon_p) p_t + d_t\]

where each factor is expressed as a log difference (approximate growth rates) and all spending series are in constant dollar terms based on the GDP deflator. Model variables are defined below:

- \(h_t\) = constant dollar health spending per capita at time \(t\)
- \(a_t\) = residual factor (primarily attributed to spending on new medical technology)
- \(y_t\) = income at time \(t\) (GDP per capita)
- \(i_t\) = average coinsurance rates at time \(t\) (out-of-pocket share of total health spending)
- \(p_t\) = relative medical price at time \(t\) (relative to GDP deflator)
- \(d_t\) = index of demographic contribution to health care spending at time \(t\)

Model parameters are defined as *elasticities*. Each elasticity represents an estimate of the percentage change real per capita NHE that results from a one percentage point increase in that model variable in question. These elasticities capture the sensitivity of health care spending growth to changes from each of the causal factors. The elasticity associated with the index of health care spending growth due to changes in the demographic composition of the population is equal to one by construction (and is therefore not shown).

- \(\varepsilon_y\) = income elasticity
- \(\varepsilon_i\) = coinsurance elasticity
- \(\varepsilon_p\) = health care price elasticity

Note that growth in relative medical prices affects health spending in two ways in this model. First, there is the direct impact of higher prices causing higher spending, other things being equal. In addition, however, there is a partial offset to this effect as higher prices for medical services tend to reduce demand somewhat, and this effect is reflected in the \(\varepsilon_p \cdot p\) term above (where \(\varepsilon_p\) is negative).

The contribution of medical technology to health care spending, primarily reflected as \(a\) in equation (1), is defined as the incremental spending on treatment methods within the period associated with adoption and diffusion of a new medical technology. This effect will reflect both the relative utilization of the technology and its relative price in comparison with existing forms of treatment. Effects on spending associated with technological change can be expected to occur with a substantial lag, extending from the initial availability of the technology through its diffusion to equilibrium (in the absence of changes in other variables).

The FCG model, as presented in equation (1), is a simple reduced-form picture that assumes that the contribution of each of the factors to health spending growth is independent of all of the others. The use of a reduced-form equation means that the model is not a behavioral equation. Rather, it is effectively a summary of the relationship between health care spending growth and the net effect of growth attributable to a range of factors on both the demand and supply side. Equation (1) assumes that there will be no interaction effects among causal variables — the effect of each factor is assumed to be independent of all others (i.e. ceteris paribus).

Where possible, the parameters in the model are estimated with other factors held constant. However, there are cases where this is difficult to do. The most important of these is the
interaction effect between income and changing medical technology. Because this effect is so critical, we attempt to explicitly incorporate it within the FCG Model, as discussed below.

To the extent that we are unable to fully control for interaction effects between the individual factors contributing to growth, or where there are additional factors contributing to growth that are not specified, the net impact of interactions and omissions on variation in health expenditure growth will be incorporated in the contribution to growth from the residual term \((a)\).

Income-technology interaction effect

In previous considerations of the factors driving health spending growth, it was typically assumed as a simplification or approximation that the contribution to growth from technology (attributed to the residual) was constant over the historical period. The contribution from medical technology was assumed to be determined by technical rather than economic factors. Technology was thus assumed to be exogenous to other factors in the model and its contribution was assumed to be constant over the long-run projection period.\(^{46}\) However, the current version of the FCG model acknowledges that economic as well as technical factors play a role in determining the effects of technological change on health care spending growth. The contribution of technological change is assumed to be a function of economic growth.

Both the direction and uptake of medical technology are responsive to ability and willingness to pay for new forms of treatment. In other words, the effects of medical technology on health care spending growth are conditional, not only on the state of medical knowledge, but also on public and private budget constraints. Public and private budget constraints for spending on medical care are determined by the total economic resources generated within the economy per person (real per capita GDP). The implication of this interaction effect is that the contributions to growth in health care spending attributable to growth in aggregate income and to advancing medical technology are highly interrelated – to the point that it is difficult to estimate the contribution from the two factors separately.

The responsiveness of the nature of medical care provided to budget constraints can be conceptualized as endogenous institutional change. This means that institutional change is the mediating mechanism that allows health care spending to respond to changes in real per capita GDP that define the budget constraint above the out-of-pocket threshold where the effective price to the consumer is at or close to zero. In practice, much of this institutional change involves changes in the nature of insurance coverage and payment methods that alter the incentives facing providers and thus influence both utilization and spending. Thus, to the extent that institutional cost-saving spillovers from care management initiatives in the commercial market (including Medicare Advantage) influence traditional Medicare spending, this effect can be seen as a form of endogenous institutional change, and will be implicitly captured in the

The FCG model shown in Equation (2) below is modified from the simpler version in Equation (1) in one critical way to address the issue of the interrelationship between income and medical technology. Rather than treating the contribution of technology to medical spending growth as an exogenous constant, we estimate the relationship between the historical technology residual and real per capita GDP (as a proxy for average income). This allows us to develop a projection of the technology residual that maintains consistency with the historical relationship to the macroeconomic environment.

\[
\begin{align*}
\eta_t &= a_t' + \varepsilon_y' y_t + \varepsilon_i i_t + (1+\varepsilon_p) p_t + d_t
\end{align*}
\]

where \(\varepsilon_y'\) is defined as the combined “income-technology elasticity”. It will be equal to \(\varepsilon_y + a(y_t)\) from Equation (1), where \(a(y_t)\) is variation in the residual that can be explained as a function of real per capita GDP. The estimation of \(\varepsilon_y'\) is discussed below. The new residual \(a_t'\) should capture both changes in the state of medical knowledge that are independent of variation in income, as well as the net effect of measurement issues and omissions. Equation (2) is used as the FCG model in developing the year-by-year growth rates for the long-range projection for the 2017 Trustees Report.

2. Estimation of FCG model parameters

Income-Technology Elasticity

Current OACT research on the income-technology elasticity implies that the combined contribution of income and new medical technology accounts for an estimated 71 percent of constant dollar per capita health spending growth over the period from 1980-2016.\(^{49}\) Thus, the elasticity of real per capita health care spending with respect to income and technological change is a critical parameter in the FCG Model.

A substantial empirical literature addresses the relationship between health care spending and real per capita GDP.\(^{50}\) This relationship has long been recognized as a strong and consistent empirical regularity in cross-country time-series data. Variations in real per capita GDP across

\(^{47}\) For a discussion of treatment of spillover effects in the context of the Factors Model by the 2016 Medicare Technical Panel, see Frakt, Austin, “Medicare Advantage to Traditional Medicare Spillovers: Draft Recommendations”, February 1, 2017 (https://aspe.hhs.gov)

\(^{48}\) There are other potentially important behavioral interaction effects that are not explicitly accounted for in the FCG model. For example, a second important relationship is the effect of the extent and nature of insurance coverage on the direction of medical research and the diffusion of new medical technology. Though this effect is widely acknowledged, the current state of empirical research does not allow for this effect to be included in a way that is defensibly grounded in historical data. See Edgar A. Peden and Mark S. Freeland, “Insurance Effects on U.S. Medical Spending (1960-1993),” Health Economics, Volume 7, 1998: 671-687.

\(^{49}\) This estimate is based on the mean estimate of the income-technology elasticity over the period 1980-2016, obtained using an extrapolation of the income-technology elasticity.

countries and time can predict a large part of the variation in real per capita health spending. Higher income countries tend to introduce new technologies earlier and to encourage broad diffusion into standards of medical practice. However, this literature does not treat technology as an endogenous factor contributing to growth in health care spending. Rather, in a plurality of studies that estimate an income elasticity, medical technology is assumed (implicitly or explicitly) to be an exogenous variable. Many models used to estimate an income elasticity at the aggregate level use pooled data across countries and time and commonly control for variation across both countries and time by including fixed effects (dummy variables) for each country and time period in the sample. Given that technology changes over time, but not across countries within a single time period, its effect is assumed to be subsumed within the estimated fixed effects by time period.

Equation (3) below shows a specification that is similar to those commonly used for the estimation of the aggregate income elasticity. Aggregate national spending on health care is represented as a function of real per capita GDP, and 2-way fixed effects (dummy variables) that capture variation that is constant across all countries in the sample over time (time-period fixed effects) and variation that is constant for each country in the sample across all time period (country fixed effects).

\[
\ln \left(\frac{h_t}{n_t} \right) = \alpha + \beta \ln \left(\frac{y_t}{n_t} \right) + \sum_{t=0}^{I} c_i + \sum_{t=0}^{T} z_t + \epsilon_{it}
\]

\(\alpha\) = constant term
\(h_t\) = nominal health care spending converted to US dollars based on purchasing power parities
\(y_t\) = nominal GDP converted to US dollars based on purchasing power parities
\(p_t\) = GDP deflator
\(n_t\) = population
\(\beta\) = coefficient on real per capita income (income elasticity)
\(I\) = number of countries in pool
\(T\) = number of years in sample
\(z\) = fixed effect for each year \(t\) in the sample
\(c\) = fixed effect for each country \(i\) in the sample
\(\epsilon_{it}\) = error term.

52 This choice largely reflects the difficulty of defining a variable that represents the state of medical technology; while there have been attempts to develop a proxy for this concept (e.g. R&D, patents), these proxies cannot address important issues such as the presence of long and variable lags in the relationship between R&D and health care spending, or the fact that many important innovations are not patented (e.g. medical procedures).
Current estimates of the income-technology elasticity are based on a specification that is similar to Equation 3 but with the difference that time period fixed effects are excluded from the model (see Equation 4 below). The income-technology elasticity incorporated in the FCG Model is based on the estimation of Equation (4) based on pooled cross-country time-series OECD data for 20 countries. Spending and income are defined in constant dollar per capita terms and deflated based on the GDP deflator. Currency conversion to U.S. dollars is based on purchasing power parities.

\[
\ln \left(\frac{h_{it}}{p_{it}} \right) = \alpha + \beta' \ln \left(\frac{y_{it}}{p_{it}} \right) + \sum_{c=0}^{I} c_i + \epsilon_{it}
\]

\(h_{it} \) = nominal health care spending converted to US dollars based on purchasing power parities
\(y_{it} \) = nominal GDP converted to US dollars based on purchasing power parities
\(p_{it} \) = GDP deflator
\(n_{it} \) = population
\(\alpha \) = constant term \(\beta' \) = coefficient on real per capita income (income-technology elasticity)
\(I \) = number of countries in pool (20)
\(t \) = year
\(c \) = fixed effect for each country \(i \) in the sample
\(\epsilon_{it} \) = error term.

The exclusion of fixed effects by time period in Equation (4) effectively means that a time trend is acting as a proxy for technological change. Time-period fixed effects tend to be positively correlated with growth in real per capita GDP. This implies that the coefficient \(\beta' \) on real per capita GDP based on Equation (4) is higher than the coefficient \(\beta \) from Equation (3). The coefficient \(\beta' \) is conceptually comparable to the elasticity \(\epsilon'_y \) from Equation (2). The difference between \(\beta' \) and \(\beta \) is assumed to be attributable to a positive interaction effect between technological change and income growth.

Change in the income-technology elasticity over time

The income-technology elasticity is assumed to change over the projection interval and the historical rate of change over time is estimated empirically. The change in the elasticity in the historical data is determined by estimating on the model specification in Equation (4) over a series of rolling 21-year sample intervals (within the full data sample extending from 1970

53 Countries in the sample include Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Iceland, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States

The model in Equation (4) was estimated for 21-year sample intervals, starting with 1970-1990, and incrementing the start and end date of the sample by a single year through the final sample interval of 1992-2012. The estimated elasticity based on each of these sample intervals was attributed to the 11th year (the midpoint) of the 21-year sample, resulting in a time series for the income-technology elasticity for the period from 1980 through 2002.

The results of this estimation show a systematic decline in the income-technology over the period from 1970 through 2012. The rate at which the elasticity declines tends to slow down over time. The time-series shown in Figure A.1 provides an estimate of the historical change in the income-technology elasticity over the period 1980-2002. This time series is used as the basis to evaluate the appropriate assumption for the income-technology elasticity over the 75-year projection interval. This greatly strengthens the empirical basis for the long-term assumption for this parameter. However, a substantial degree of uncertainty continues to be associated with the projection, as the historical interval represented by the series (1970-2012) is fairly short in comparison with the projection interval (75 years) and the estimates remain at least somewhat sensitive to issues of data and sample selection. Conceptually, this downward trend captures, in part, the impacts on health spending associated with the influence on technology from endogenous institutional change.

Figure A.1. —Income-technology Elasticity Estimates, 1980-2002

Relative medical price inflation

Data sources for medical prices are consistent with those used in the National Health

An alternative method of estimating change in the income-technology elasticity (β') would be to include an interaction term between β' and some function of a time trend. We chose to estimate the change in this parameter based on rolling regression to avoid imposing a functional form on the path of change. This becomes relevant when we consider the projection of the elasticity over the 75-year projection interval, as the difference between (for example) a linear and a log-linear time trend implies a large difference in the long-term assumption.
Expenditure Accounts (NHEA).56 The price measure for total personal health care spending is a chain-weighted deflator based on relevant Producer Price Indexes (PPI) and Consumer Price Indexes (CPI), with the weight for each index set equal to the share of personal health care expenditures accounted for by that type of service.

The historical estimate of the aggregate price elasticity (-0.4) is based on the estimate in the OACTS’s NHE Projections Model.57 This elasticity exceeds the out-of-pocket price elasticity of -0.2 estimated based on the Rand Health Insurance Experiment (HIE). This higher price elasticity at the aggregate level reflects the broader definition of the elasticity, which includes price sensitivity at the market level in addition to the price effects for households in response to variations in the effective out-of-pocket price that are the basis for the HIE elasticity. Additional price sensitivity occurs at the point of purchase of private health insurance and in the process of selective contracting by insurers acting as agents for consumers.

Insurance coverage

The effects of insurance are defined based on the aggregate average out-of-pocket share of health expenditures. This definition is conceptually consistent with the elasticity based on the Rand HIE (-0.2).58 The estimation of this insurance elasticity was primarily cross-sectional based on variation in health care spending as a function of the generosity of insurance coverage across households at a point in time, so this elasticity effectively holds technology constant. This variable captures static effects of insurance coverage only. This includes the increased utilization of current medical technologies in response to reduced out-of-pocket price. However, this effect would exclude any dynamic effects of insurance coverage on the development of new medical technologies. Dynamic interaction effects between insurance and technology are in theory included in the residual (a'). There is also the potential for three-way interaction effects among the contributions of insurance with both income and technology effects that cannot be separated out based on our estimation methods. This suggests that some part of the dynamic effects of insurance coverage may also be captured in the income-technology contribution.

Demographic change

The effects of shifts in the population across age and gender cohorts are estimated based on the historical and projected population cohorts over time prepared by the SSA Office of the Chief Actuary on behalf of the Board of Trustees, combined with a base-year distribution of expenditures across age-gender groups. The application of base-year weights to projections of population by age-gender cohorts produces an index of growth in health spending that will result

\begin{itemize}
\item 58 Newhouse J, Health Insurance Experiment Group. \textit{Free for All? Lessons from the RAND Health Insurance Experiment}. Cambridge (MA): Harvard University Press; 1993.
\end{itemize}
from shifts across these cohorts. This methodology assumes that the distribution of expenditures does not change over time in response to changes in the distribution of population across age-gender cohorts.

Model residual

The contribution to growth in real per capita NHE from the FCG Model residual \(a' \) is extremely volatile historically. We use a 15-year moving-average to smooth the time series so that we can better evaluate the path of this contribution over time (Figure A.2, below).

Based on the smoothed time series, the contribution of the model residual follows a downward trend over time, averaging about 0.6 percentage points from 2010-2016.

Historical parameter assumptions

<table>
<thead>
<tr>
<th>Equation (2) variable</th>
<th>Historical estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income-technology elasticity ε_y</td>
<td>1.5-1.7</td>
</tr>
<tr>
<td>Insurance elasticity* ε_i</td>
<td>−0.2</td>
</tr>
<tr>
<td>Relative medical price elasticity ε_p</td>
<td>−0.4</td>
</tr>
</tbody>
</table>

*Reflects the static impact of insurance coverage

Table A.1 shows the historical elasticity estimates that are used in equation (2) to explain a large part of historical growth in health spending over the period from 1966 through 2016, as shown in Figure A.3. below.

60 The predicted increases in real per capita health expenditures (Figure A.3.) include the estimated contribution from a combined income-technology effect, relative medical price inflation, insurance coverage, and demographic change.
The predicted values as shown in Figure A.3 also control for a substantial lag in the relationship between health spending growth and income growth, by incorporating a five-year moving average of growth in real per capita GDP. Figure A.3 is not directly comparable with Figure A.2, because data shown in Figure A.2 are based on a 15-year moving average, while data in Figure A.3 are not.

3. FCG long-range projections model

Projections of health spending growth using the FCG model should be consistent with historical relationships between growth in health spending and the individual factors contributing to growth. However, a simple extrapolation of the historical relationships over 1960-2016 implies an increase in the health share of spending that would ultimately absorb all available economic resources. In the long run, if the health share of consumption continues to rise along its historical trajectory, economic theory suggests that consumer preferences will adjust to slow the rate of increase in the health share of GDP. This predicted change in consumer preferences implies that the parameters in the FCG model can be expected to change over time. Specifically, as health accounts for a rising share of consumption, we can expect to see rising sensitivity to relative medical prices (as represented by the price elasticity), and a declining tendency to further increase consumption of health care out of income at the margin (as represented by the income-technology elasticity).

In the discussion below we present the FCG parameter assumptions over the projection period, the exogenous parameter assumptions used to develop the FCG projections, and the results from the FCG model that were used in the 2018 Trustees Report.

FCG Parameter Assumptions

The elasticity assumptions in the FCG model determine the sensitivity of national health care expenditures to changes in each factor for the projection in the long-term (defined here as years 25 through 75 of the 75-year projection). As described above, economic theory suggests that as the health share of consumption rises substantially over the long-term, the elasticities that represent consumer preferences can be expected to change (see Table A.2. below). Specifically,
we can expect consumers to become increasingly sensitive to the relative price of goods that account for a growing share of total consumption (implying a rising magnitude in the price elasticity). We can also expect to see a decline in the income-technology elasticity over time. An income-technology elasticity greater than one means that health spending will grow faster than GDP, in the absence of a change in other factors (such as price). Though the historical income-technology elasticity is estimated to be well above one, we can expect this parameter to decline to one in a long-term equilibrium state so that non-health consumption is not crowded out by the continued rise in the health share.

Table A.2. below provides a summary of the key elasticity assumptions used for the FCG model in generating the growth in NHE applied in the 2018 Trustees Report.

<table>
<thead>
<tr>
<th>Income-technology elasticity (ε'_y)</th>
<th>Insurance Elasticity (ε_i)</th>
<th>Price elasticity (ε_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.26 → 1.08</td>
<td>-0.2</td>
<td>-0.52 → -0.59</td>
</tr>
</tbody>
</table>

Income-technology elasticity assumption

To develop this assumption, we estimated the historical change in the elasticity empirically based on cross-country time-series data from the OECD. This series was then projected forward over the 75-year projection interval.

The estimated historical time series for the income-technology elasticity was projected based on fitting the historical time series of the income-technology elasticity estimates (from the rolling 21-year regressions) as a function of the natural log of a time trend as shown in Equation (5) below.

\[\beta_t = \gamma + \delta' \ln(TREND(b)) + \varepsilon_t \]

\(TREND(b)\) = time trend such that \(TREND(b)=1\), \(TREND(b+n) = 1+n\), for \(n=1…30\)

\(b = \) base year for time trend

\(\beta_t = \) Income-technology elasticity estimates based on the rolling regressions with midpoint \(t\)

\(t = \) year representing the sample midpoint from the rolling regressions (\(t=1980…2002\))

\(\gamma = \) constant term

62 The use of a log-based time trend was selected following evaluation of alternative functional forms. The choice of a log-form implies that the rate of change in the income-technology elasticity will tend to slow over time. This pattern of change was consistent with the estimated historical time-series for the income-elasticity, and also tended to produce a more reasonable projection that levels out near a value of 1.0 in the long-term. In comparison, a linear time trend implies a constant rate of decline that ultimately reaches zero unreasonably fast (much sooner than the end of the 75 year projection).
δ = coefficient on trend variable

As the base year of the trend increases, the log of the trend increases in curvature. The coefficient was estimated based on this specification, which was selected by varying the base year of the time trend so as to maximize the adjusted R-Squared for equation (5).

The resulting actual versus predicted values for the income-technology elasticity, with the projection based on this model are shown below in Figure A.4.

Figure A.4.— Income-Technology Elasticity Estimates: Historical Estimates and Projections for 2018 Trustees Report

<table>
<thead>
<tr>
<th>Fitted values, 1980-2002</th>
<th>Projection 2017-2092</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Price elasticity assumptions

The price elasticity of demand for health care (εₚ) is inelastic over the history (estimated at -0.4), meaning that a one percentage point increase in medical prices relative to economy-wide prices is associated with a -0.4 percentage point reduction in real health care consumption. This also implies that the net impact of medical prices rising faster than economy-wide inflation on nominal health care spending growth is positive. Over the long-term, medical prices are projected to continue to grow faster than economy-wide prices, although the differential is expected to be smaller than has been the case historically. However, as discussed earlier, the
magnitude of the price elasticity is expected to increase (in absolute value) as the share of consumption allocated to health care rises over time.63

The rationale for the increase in consumer price sensitivity (or magnitude of the price elasticity) implies that the price elasticity will be a function of the health share of GDP. This relationship is derived from the Slutsky Equation (see Box 1). Within the FCG Model, this means that the price elasticity is endogenously determined, since the health share of GDP is a function of all of the parameter assumption in Equation (2). The effects of this endogeneity have been explicitly incorporated in the model.64

The resulting projection of the price elasticity is assumed to decline from the historical estimate of -0.4 to -0.5 by year 25 of the projection, and to then decline further to -0.6 by year 75 of the projection.

Box 1: Projecting the price elasticity of demand for health care as the health share of consumption rises

The Slutsky equation (in elasticity form) is an identity that decomposes the price elasticity into two components: a pure substitution effect and an income effect. The pure substitution effect is not observed—it is the change in demand in response to a change in the relative price of health care holding utility constant. The income effect occurs because a rise in price implies a lower income. That is, the greater the share of health care out of total consumption, and the higher the income elasticity, the larger will be the income component of the price effect:

$$\varepsilon_p = \varepsilon_p^c - S_h \varepsilon'_y$$

where ε_p is the observed price elasticity, ε_p^c is the compensated price elasticity (or pure substitution effect), S_h is the health spending share of total consumption, and ε'_y is the income-technology elasticity.

Given assumptions of price and income elasticities and historical data on the health share of consumption, we can back out the unobserved pure substitution effect (compensated price elasticity). If in 2013 the observed price elasticity is -0.4, the income-technology elasticity (including interaction effects) is 1.4, and the health share of GDP is 17 percent, then the compensated price elasticity is estimated at -0.2 (calculated as $-0.4 + 0.17 \times 1.4$).

We assume that the compensated elasticity remains constant at -0.2 over time as the pure substitution effect is not affected as the health share of consumption changes. We can combine this constant with preliminary projections for the health share of consumption and the assumed income-technology elasticity over time to impute the rise in the total price elasticity that is consistent with the rising share of health care spending.

64 The endogeneity of the price elasticity and the health share of GDP effectively require a simultaneous model solution. We approximate this result by solving the model iteratively for the price elasticity and the health share, and then resolving the model until both concepts converge to an internally consistent solution.
Note that the health share of GDP will be influenced by the projected price elasticity. This means that the system will be simultaneous by nature. However, we can approach an answer that is fairly stable by iterating between the projections based on the FCG model and the relationship between elasticities in the Slutsky equation. The resulting estimate for the price elasticity \(\varepsilon_p \) in year 75 is -0.6 (which is determined by \(-0.6 = -0.2 - 0.35 \times 1.1 \)), as shown in table A.2.65

FCG Model Residual Assumptions

The residual expenditure growth \((\alpha'_t) \) estimated from the historical predictions of the FCG model in equation (2) is highly volatile, with a positive, declining trend over the 1980-2016 period. The historical trend through the most recent data exhibits a declining trend over 1980-2016 (Figure A-2 above). An extrapolation of historical trend implies that the residual can be expected to approach zero over the period of the short to medium term projection (2017-2042). Consistent with past assumption, we assume that this residual is equal to zero over the long-term projection period from 2042-2092.

Future research efforts will be focused evaluating the specification of the FCG Model in Equation (3) to determine if the specification of the model can be improved to produce a smaller residual, and on quantifying the uncertainty associated with projecting the historical trend in the residual.

Exogenous Assumptions

The key economic assumptions for per capita GDP and the GDP deflator are from the intermediate set of assumptions underlying the 2018 Social Security and Medicare Trustees Reports. The relative medical price inflation is determined based on long-range assumptions regarding growth in medical input prices and available evidence on achievable resource-based health sector productivity growth. As described in the main text of this memorandum, medical input prices are assumed to grow at roughly 3.4 percent per year. Overall resource-based health sector productivity is assumed to grow at 0.4 percent per year by assuming hospital and physician productivity will grow at published historical rates (0.4 percent and 1.1 percent, respectively), while all other provider categories, such as skilled nursing facilities, home health agencies, hospices, diagnostic laboratories, dialysis centers, ambulance companies, etc., will grow at zero, on average. Combining these assumptions produces a medical output price increase of 3.0 percent per year, which is 0.8 percentage point faster than the GDP deflator. Thus, the FCG model uses a relative medical price inflation assumption of 0.8 percent per year, based on historical trends in the deflators for personal health care and GDP.67

65 Estimate is calculated using the health share of GDP under the Illustrative Alternative Scenario.

Finally, it is assumed in the FCG model that the out-of-pocket share of national health expenditures remains unchanged over the projection period. This assumption reflects, in part, that the average cost sharing associated with the Medicare benefit is likely to remain stable over the long-range projection period under current law, including consideration of the effects of supplemental coverage through private Medigap policies, Medicare Advantage plans, employersponsored retiree health plans, and Medicaid.

Results

The FCG model output was used to determine the year-by-year growth rates for overall national health spending and volume and intensity in the 2018 Trustees Report. Figure A.5. below shows the excess cost growth rates from the FCG model based on the methods and assumptions described above. As noted in the main body of this memorandum, the volume and intensity growth rates from the FCG model were used with the Medicare-specific payment rate updates under current law and anticipated impacts on volume and intensity from the ACA to obtain the projected increases in Medicare expenditures per beneficiary by type of service.

Figure A.5.—Long-Range NHE Excess Cost Growth* based on the FCG Model

Source: Centers for Medicare & Medicaid Services, Office of the Actuary.

*Excess Cost Growth is defined as growth in per capita, age-gender adjusted health spending less growth per capita GDP.