

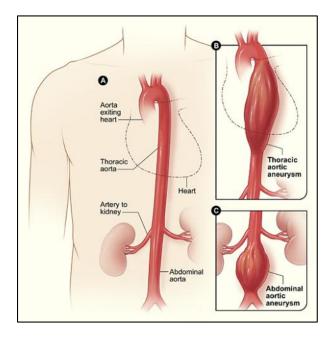
ICD10-PCS Coding Proposal for Aptus® Heli-FXTM Procedure

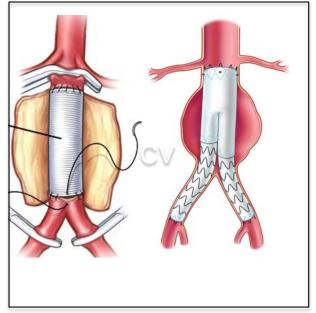
Bart Edward Muhs, MD, PhD
Assoc. Professor of Surgery (Vascular)
Co-Director, Endovascular Program
Yale School of Medicine, New Haven CT

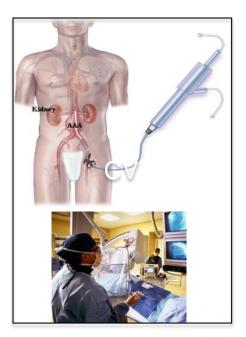
Kathy Smith, CPC Sr Coding & Reimbursement Analyst, Sue Rowinski Group LLC

March 19, 2014 Baltimore, MD

ICD10-PCS Coding Proposal: Aptus Heli-FX Procedure


Agenda


- Heli-FX Clinical Benefit
- Heli-FX Procedure Overview
- Rationale for new ICD10-PCS Codes
- ICD10-PCS Coding Request



Aortic Aneurysms Have Two Treatment Options: Open Surgical and Endovascular Aneurysm Repair

Aortic Aneurysms:

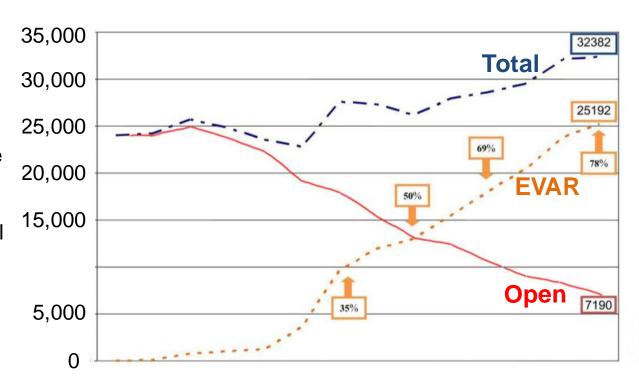
- Thoracic
- Abdominal

Repair:

- Open Surgical
- Endovascular

Endo Repair

- Less morbidity
- Durability?
- Anatomical limitations



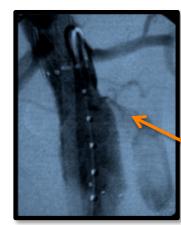
Endovascular Aneurysm Repair (EVAR): Now Most Common Procedure for Aortic Aneurysm Repair in US

By 2009, ≈45,000 elective aortic aneurysm repairs performed in US Medicare population.

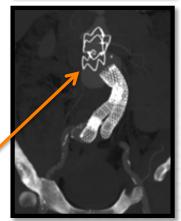
Among > 30,000 infrarenal repairs ≈80% performed with EVAR.

Sachs T, et al. J Vasc Surg. 2011;54:881-888

"Achilles Heel" of EVAR: Despite Advances in Endografts, Late Failure Remains, Life Long F/U Still Required



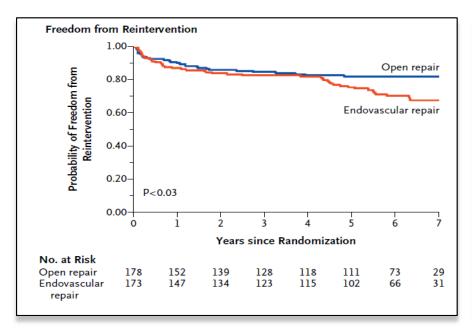
- Loss of proximal neck seal and/or fixation = endoleaks, migration, aneurysm repressurization, enlargement, rupture
- Most failure and 2nd interventions occur at proximal aortic neck

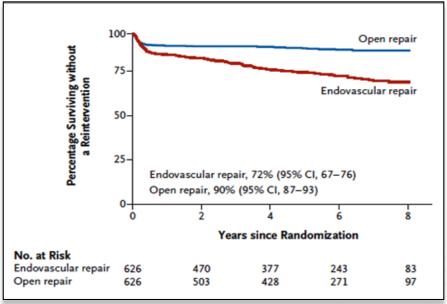


 Risk of complications continues through each year of followup.

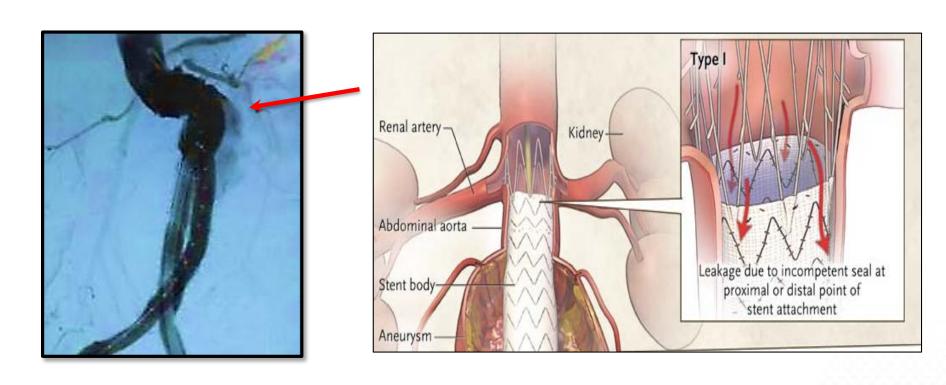
Loss of fixation, seal due to migration

Type 1 Endoleak





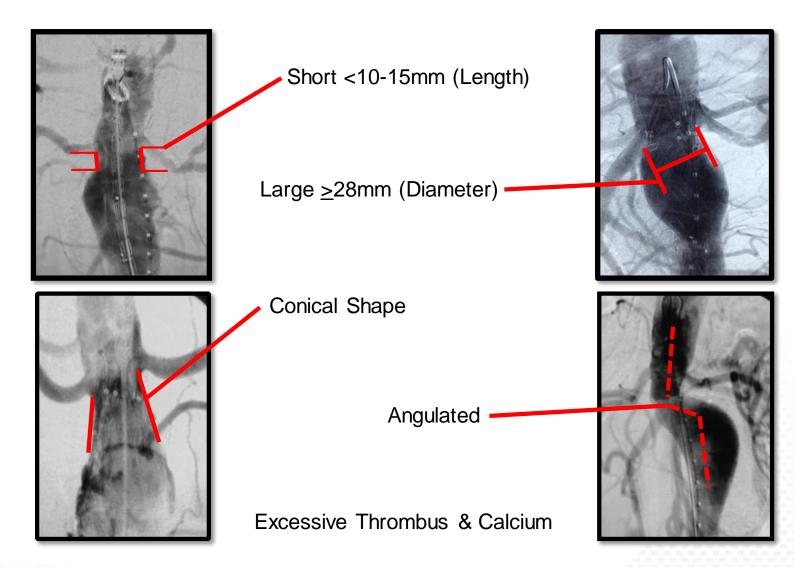
Landmark EVAR-1 & DREAM Trials: Higher Complications & 2nd Interven. in EVAR vs. Open Repair


De Bruin et al. N Engl J Med 2010;362:1881-9

R.M. Greenhalgh et al. N Engl J Med 2010, 10.1056/NEJM 0909305

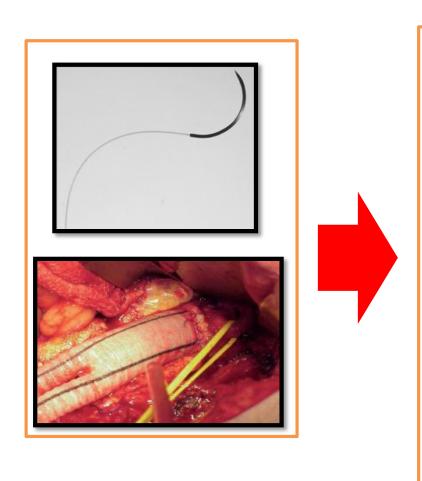
Proximal Neck Failure: The Most Frequent Cause for 2nd Interventions and Explantation

Proximal neck issues occur early and late and <u>must</u>be corrected when detected


Turney et al. J Vasc Surg. (30 December 2013)

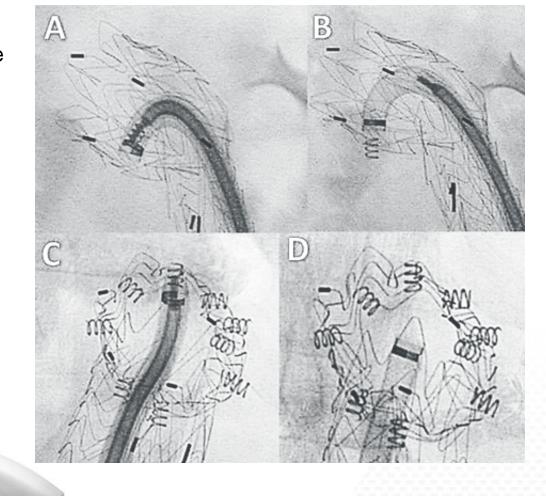
Wyss et al. Ann Surg 2010;252(5):805-12.

Hostile Prox Neck Compromises Acute, Early & Long Term Seal & Fixation: Commonly Seen in EVAR Patients



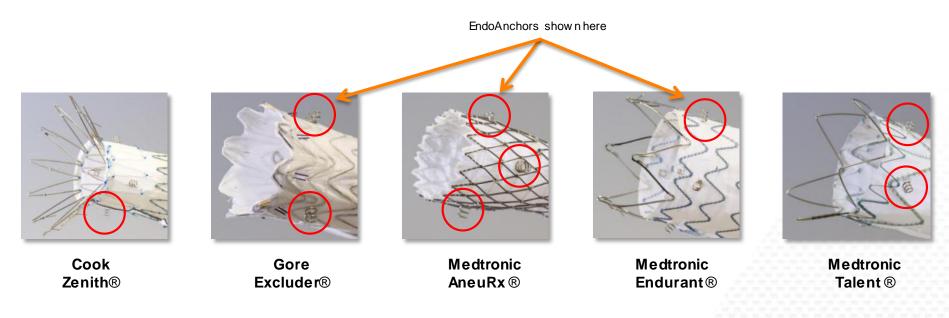
Heli-FX Endovascular Procedure

Replicates the Gold Standard 'Surgical' Type Anastomosis



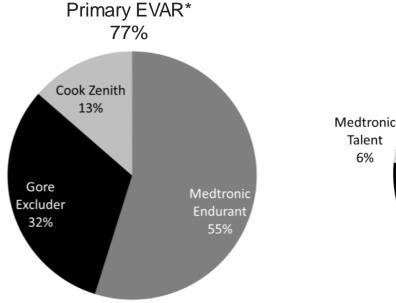
Heli-FX System includes Anchors, Applier, and Guide Applier is Microprocessor Controlled, Guide is Steerable

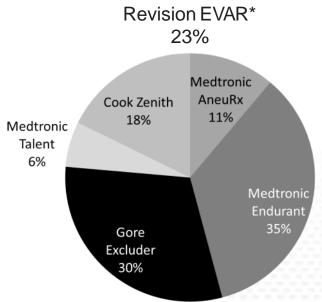
- Surgical-type anastomosis at proximal aortic neck (location of type la high-pressure endoleaks)
- Physician determined location and number of fixation points/anchors
- Similar versatility & limitations as open surgically sutured anastomosis (i.e. tissue strength, calcium, wall penetration)



Aptus Heli-FX System 510(k) Cleared, CE Marked: Indicated for Leading Endografts

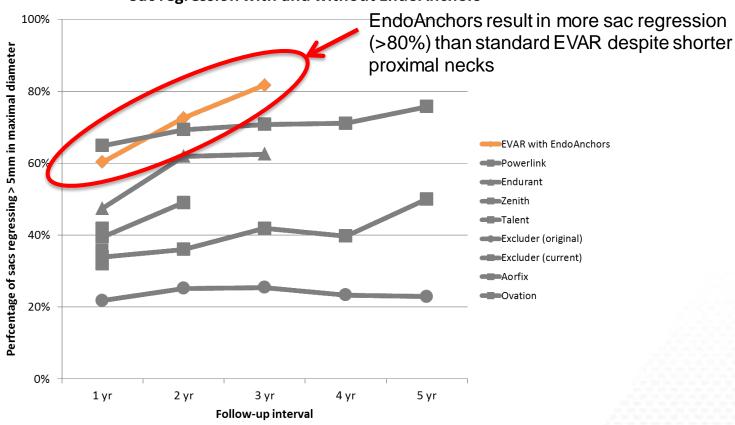
- Intended to provide fixation and augment sealing between endovascular aortic grafts and aorta
- Evaluated, determined compatible with Cook Zenith®, Gore Excluder®,
 Medtronic AneuRx®, Endurant® and Talent® (AAA), Cook Zenith TX2®, Gore TAG® and Medtronic Valiant® (TAA)




Heli-FX Procedure:

Experience Demonstrates Growing Adoption

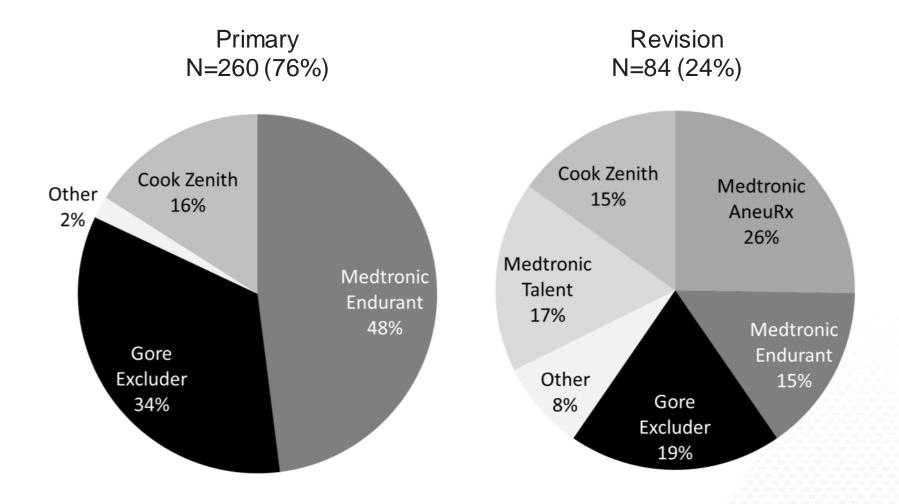
Clinical & Commercial Experience		
Number of total Patients treated	> 2100	
Number of EndoAnchors implanted	>10,000	
Number of US Customers	>350 Hospitals	
Specialties using Heli-FX	Vasc Surgeons, Int Radiologists & Cardiologists, CT Surgeons	
AAA:TAA Case Ratio	Approx 10:1 to date	



Heli-FX-Related Outcomes from STAPLE-2: EndoAnchors Result in More Sac Regression

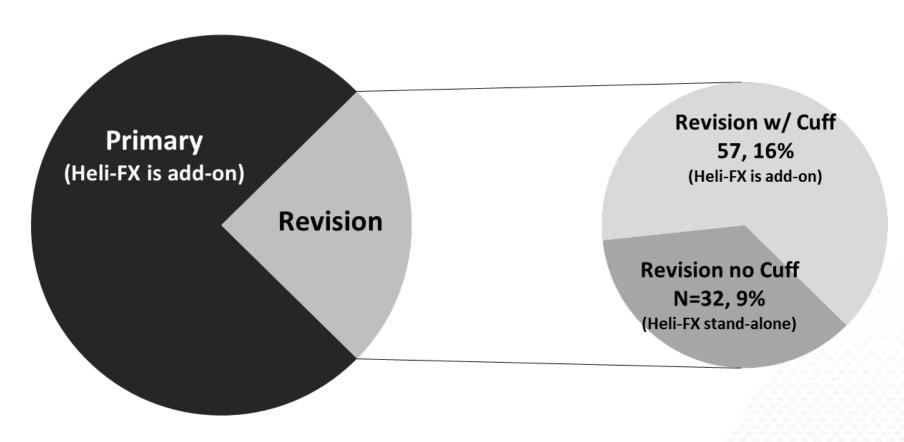
Sac stability is key determinant of success of EVAR

ANCHOR Post-Market Registry


Principal Investigators	 Dr William Jordan, University of Alabama, Birmingham (US) Dr Jean-Paul de Vries, St Antonius Hospital, Nieuwegein (NL) 		
Design	Prospective, observational, international, dual-arm registry • Primary arm – EndoAnchors placed at time of endograft implant • Revision arm – EndoAnchors placed as part of a later revision procedure		
Protocol	EndoAnchor use per IFU, follow-up per standard of care		
Duration	Five years follow-up		
Primary	Effectiveness	Successful implantation + freedom from migration / type la endoleak at one year	
Endpoints	Safety	Freedom from device (Heli-FX) or procedure-related SAE at one year	
Sites	37 US / 18 EU		
Patients Enrolled	345 as of 1/31/14 (continuing up to 1,000 per study arm)		

ANCHOR Registry:

Case Mix Shows Widely Varied Usage & Endograft Types



ANCHOR Registry – EndoAnchor Usage Add-on to EVAR and Stand-Alone

Procedure break-down:

ANCHOR Registry - Anatomical Characteristics* Indicates Some of Most 'Challenging' Anatomy Studied in EVAR

	All	Primary	Revision
Max Aneurysm Diameter [mm], mean (range)	58.0 (24-98)	55.9 (24-98)	65.3 (34-93)
Neck Length [mm], mean (range)	15.9 (0-57)	16.3 (0-57)	14.5 (2-44)
Necks ≤10mm Length, N (%)	43%	42%	45%
Neck Diameter ¹ [mm], mean (range)	27.0 (17-45)	26.2 (17-45)	29.5 (21-44)
Conical Necks ² , N (%)	60%	59%	61%

⁽¹⁾ At most distal renal artery

^{(2) &}gt;10% increase in diameter from most distal renal artery to 15mm below most distal renal

^{*} Analysis based on available Core Laboratory data

ANCHOR Registry - Reason for EndoAnchoring Prevention & Treatment of Late Failure Verifies Clinical Need

	Concern for Late Failure	147 (56.5%)
Primary (n=260)		
(11 = 33)	Prevention of Neck Dilation	42 (16.2%)
	Type 1a Endoleak	42 (50%)
Revision (n=84)	Migration & Endoleak	21 (25%)
, ,	Migration	11 (13.1%)

Median#EndoAnchorsImplanted*			
Primary Arm:	5		
Revision Arm:	6		
Total Combined:	6		

*EndoAnchors are permanently implanted; patients need to be followed long term

ANCHOR Registry – Acute Technical Success Favorable Results Suggest Improvement Over 'Standard of Care'

Arm	N	Success	% Successful
Primary	260	257	98.8%
Revision	84	78	92.9%

- No EndoAnchor related SAEs or re-interventions
- 50% of type 1 endoleaks treated w/EndoAnchors also used Cuffs (53/106)

Reasons for Unsuccessful Results:

- Primary: 3 Unresolved type 1a endoleak at final angio, 2 resolved (1 @1-M & 1 @3-M F/Us respectively)
- Revision (N=6): Persistent Type 1a endoleak at final angio, 2 Pts outside Aptus IFU

ANCHOR Results Compare Favorably to Alternative Tx

Patients with Persistent Type 1a Endoleak at End of Primary EVAR procedure

Studies	Type 1a Endoleak
Byrne J et al.* (Patients treated with Palmaz Stent)	8.6% (14/162)**
ANCHOR Registry	1.6% (1/59)***

Meta-analysis of outcomes in AAA Endo Repair with hostile anatomy		Type 1 Endoleaks
Studies	Median Follow-Up	Hostile Necks
Meta-analysis, Antoniou et al*	12-Months	9.8% (20/205)**
ANCHOR Registry	10.4-Months	1.5% (3/189)***

- * Byrne J et al. Ann Vasc Surg 2013 May;27(4):401-11
- ** Rate includes both emergent and elective patients receiving Palmaz stents during primary EVAR procedure.
- *** N = 59, 1 out of 59 Patients had an acute Type I endoleak unresolved at final angio

- * Antoniou GA et al. A meta-analysis of outcomes of endovascular abdominal aortic aneurysm repair in patients with hostile and friendly neck anatomy. J Vasc Surg 2012
- ** Hostile neck criteria: neck length <15 mm and neck angulation > 60 degrees
- *** Hostile as determined by physician in Primary Arm

ANCHOR Registry:

Favorable Conclusions from Early Results

- EndoAnchors show favorable results as prophylaxis for late proximal seal complications
 - 99% technical success
 - No Type 1a Endoleaks in 10-mo median F/U, despite high proportion of hostile necks
 - Data consistent with STAPLE-2 IDE trial where all pts had EndoAnchors placed primarily
- EndoAnchors show high effectiveness in treating acute and late Type 1a endoleaks (98% & 90% respectively)
- Low re-intervention rates (0.4%) in the Primary Arm despite hostile anatomy
 - Low Type 1a Endoleak rates (1.5%) in Primary compared to ~10% in hostile necks per meta analysis by Antoniou et al

The EndoAnchoring Procedure

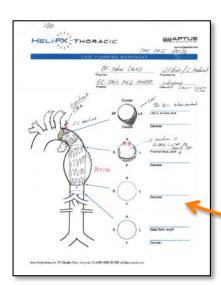
Heli-FX Procedure Duration: Implant Time Varies with # of Anchors, Complexity of Anatomy, Familiarity of Physician

Recommended # EndoAnchors:	 4 EndoAnchors recommended for ≤29mm dia aortas 6+ EndoAnchors recommended for >29mm dia aortas EndoAnchor locations should avoid severe thrombus and calcium
Avg EndoAnchors Implanted:	During a Primary or Revision EVAR or TEVAR is 5 to 6
Add'l Operating Room Time:	30-45 min (not including set up) required to implant EndoAnchors
Heli-FX Procedure:	EndoAnchor Procedure has its own distinct beginning, middle & end separate from the Endograft insertion & implantation May also be performed as a stand alone procedure (Repair without Endograft Extension Cuff)

Image Guided, Resource Intensive Procedure Completed in OR, Cath Lab or Interventional Suite

Anchoring Requires Advance Planning: Location(s) and C-Arm Angles for Fluoroscopy & Implant

AAA Case – iPad used for Case – Planning



C-Arm Used for EndoAnchoring Positioning & Angulation

Case Planning:

Case planning by physician includes CT scan review, measurements, review of 3D recon & planning for EndoAnchor implantation location(s) – iPad or hard copy

TAA Case - Hard Copy Worksheet used for Case Planning

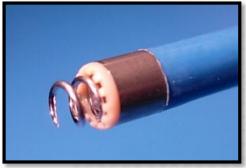
Heli-FX Device Preparation (Pre-Insertion)

Device Packaging:

Product is unpacked & Provided to sterile field

Device Preparation:

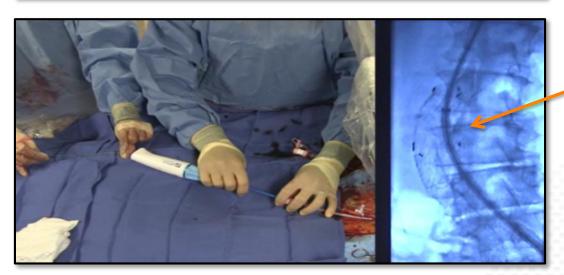
- Saline flush all components
- Turn Applier on



EndoAnchor Loading:

- Load EndoAnchor
- Verify loading

Heli-FX Device Insertion: After Prep/Loading, Guide is Inserted



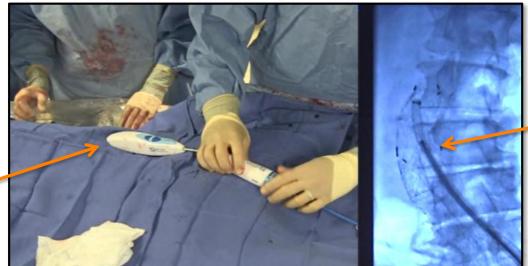
Insert Guide & Dilator into femoral artery

Dilator & Guide entering Iliac

Heli-FX Guide

Advance & position Into Guide at Proximal Neck of Aorta

Dilator & Guide At Proximal Neck



Guide is Positioned, Applier is then Inserted and Advanced

Applier inserted into Guide

Applier is advanced to proximal neck

Anchor Applier

Heli-FX Implantation: Proper Positioning Highly Critical

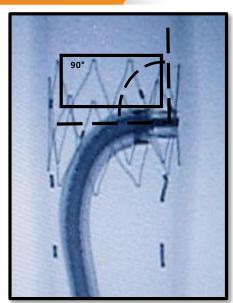
Perpendicular Positioning

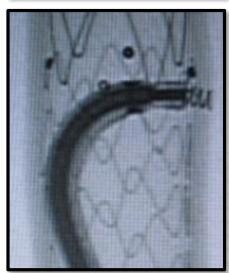
- Rotate Guide to visualize "C" marker
- Position Guide & Applier 90° relative to endograft

Apposition

- Stabilize Guide. Advance Applier until resistance is felt against endograft & aortic wall.
- Confirm perpendicular positioning & Guide recoiling against opposite wall under fluoro

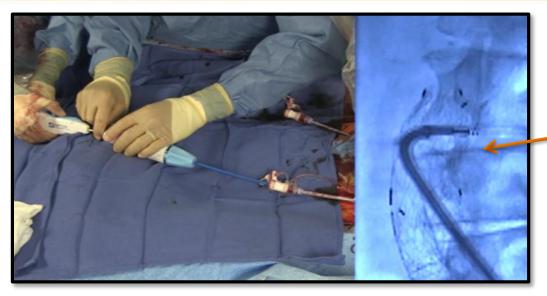
Stage 1

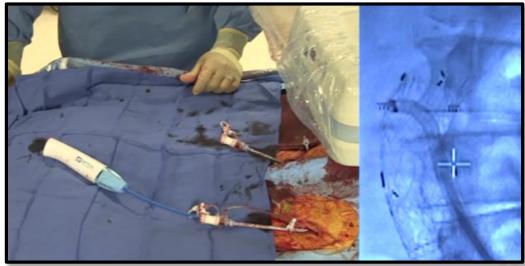

- Press Applier Forward once to implant EndoAnchor halfway.
- Confirm EndoAnchor tip penetrated thru endograft & Guide/Applier position remained stable
- If acceptable, proceed to Stage 2. Otherwise, press Reverse button & attempt again. Re-position if necessary.


Stage 2

- Maintain constant position & pressure throughout deployment sequence.
- Press Applier Forward button again to fully implant EndoAnchor
- Slowly retract Applier under fluoro to ensure EndoAnchor is fully released.

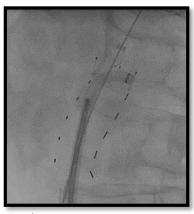
Repeat the above steps for each EndoAnchor (Avg. 5-6 per case)





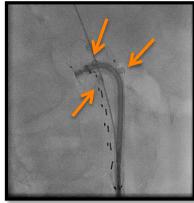
Heli-FX Device Insertion & Implantation of EndoAnchors

Guide is 'deflected' into position, Anchor implanted

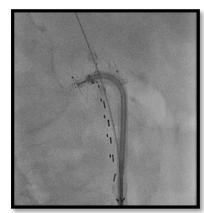

Heli-FX Procedure as Add-On to EVAR (Parent Procedure)

Angiogram prior to EndoAnchoring Ensuring Proper Graft Location

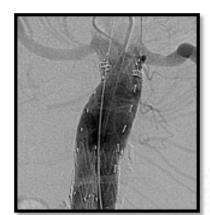
Heli-FX Guide Advancement



1st Anchoring Location Selected w/ Guide (C-Arm LAO 45°)



Heli-FX Applier Ready to Implant 1st EndoAnchor


Arrows Denote Implanted 3 EndoAnchors

Applier Ready to Implant 4th EndoAnchor (C-Arm RAO 45°)

4th EndoAnchor Implanted

Final Angiogram after EndoAnchoring

FDA Classification

TITLE 21--FOOD AND DRUGS
CHAPTER I--FOOD AND DRUG ADMINISTRATION
DEPARTMENT OF HEALTH AND HUMAN SERVICES SUBCHAPTER H--MEDICAL DEVICES
PART 870 CARDIOVASCULAR DEVICES

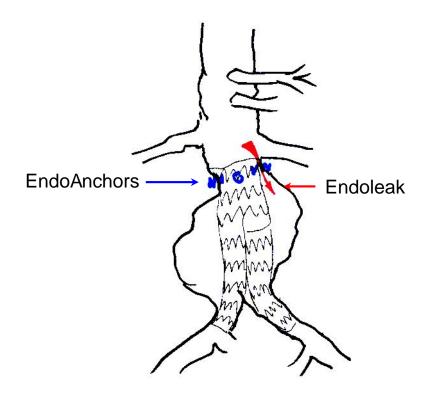
Subpart D.-Cardiovascular Prosthetic Devices § 870.3250 - Vascular clip. § 870.3260 - Vena cava clip. § 870.3300 - Vascular embolization device. § 870.3375 - Cardiovascular intravascular filter. § 870.3450 - Vascular graft prosthesis. § 870,3460 - Endovascular Suturing System. § 870,3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. § 870.3535 - Intra-aortic balloon and control system § 870.3545 - Ventricular bypass (assist) device. § 870.3600 - External pacemaker pulse generator. § 870.3610 - Implantable pacemaker pulse generator. § 870.3620 - Pacemaker lead adaptor. § 870.3630 - Pacemaker generator function analyzer. § 870.3640 - Indirect pacemaker generator function analyzer. § 870.3650 - Pacemaker polymeric mesh bag. § 870.3670 - Pacemaker charger. § 870.3680 - Cardiovascular permanent or temporary pacemaker electrode. § 870.3690 - Pacemaker test magnet. § 870.3700 - Pacemaker programmers. § 870.3710 - Pacemaker repair or replacement material. § 870.3720 - Pacemaker electrode function tester. § 870.3730 - Pacemaker service tools. § 870.3800 - Annuloplasty ring. § 870.3850 - Carotid sinus nerve stimulator. § 870,3925 - Replacement heart valve. § 870.3935 - Prosthetic heart valve holder.

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=870.3460

§ 870.3945 - Prosthetic heart valve sizer.

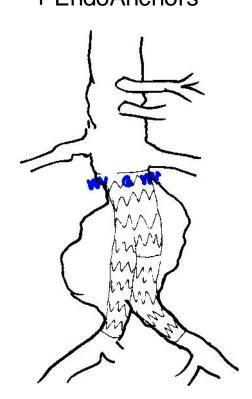
Heli-FX Clinical Scenarios Vary According to Patient Need ,,,,,

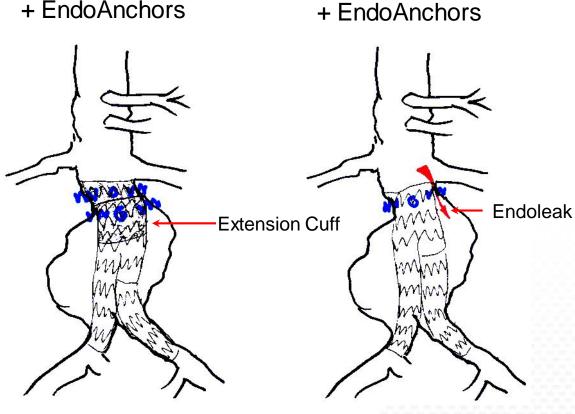
Six (6) procedural use cases


		EVAR (Body Section: Lower Artery)	TEVAR (Body Section: Heart & Great Vessel)
Heli-FX as	Primary	Control of acute Endoleak and/or Hostile anatomy	Control of acute Endoleak and/or Hostile anatomy
Add-On	Revision	Control of Endoleak / repair of migration	Control of Endoleak / repair of migration
Heli-FX as Stand-Alone	Revision of previous aneurysm repair	Control of Endoleak	Control of Endoleak

Heli-FX Procedure as Stand Alone (Parent Procedure)

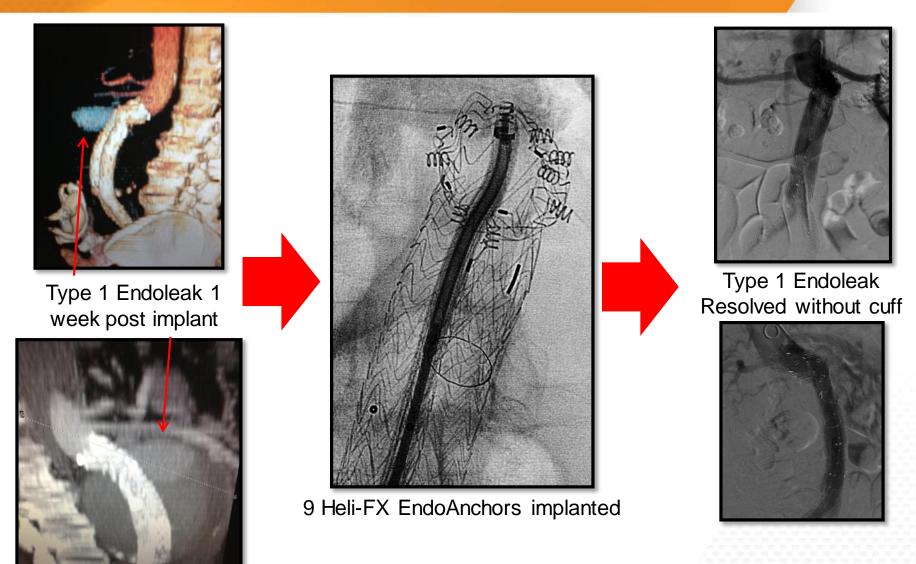
EndoAnchoring Stand Alone Procedure to Repair Endoleak


Heli-FX as Add-On to EVAR (Parent Procedure)


Primary or Revision

with Endoleak

Primary Challenging Neck Anatomy + EndoAnchors

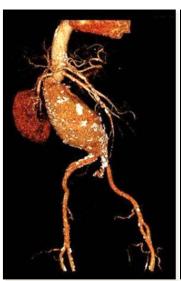

Revision
with Cuff
+ EndoAnchors

Revision Case w/a Type 1a Endoleak, Anchors

Images courtesy of Bart Muhs, MD & Scott Aruny, MD Yale New Haven Medical Center

Primary Endograft Case w/Acute Type 1a Endoleak

Pre-Op


- 9.5cm asymptomatic AAA, female
- Reason for anchoring: highly angulated, short neck

Intra-Op

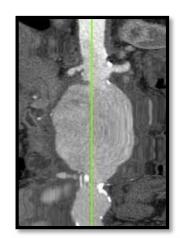
 First completion with type la endoleak

Final Angio

- Proximal cuff and 4 EndoAnchors
- No endoleak at final angio or 30day CTA

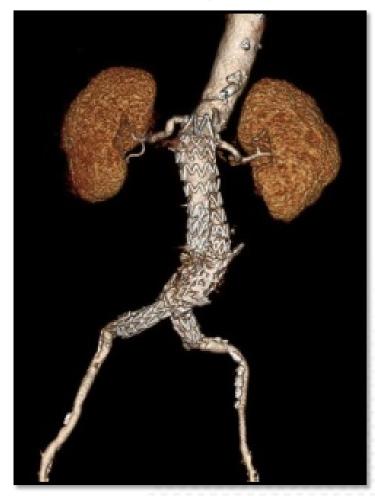
30-day CTA


Case images courtesy of Will Jordan, MD, Univ. of Alabama



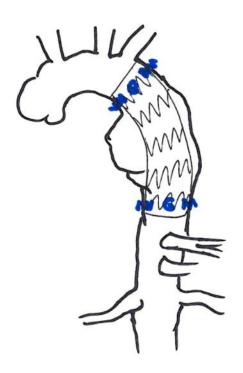
Primary Endograft Case with Challenging Anatomy

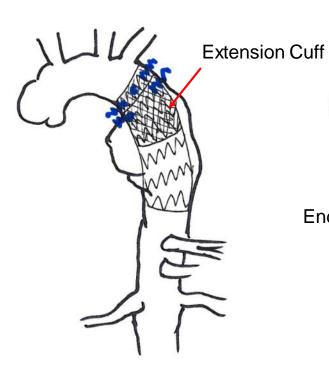
- 77 year old female
- 95mm saccular AAA
- Short proximal aortic neck

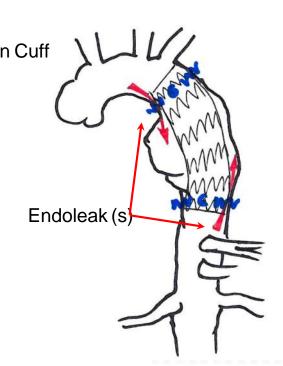


Case images courtesy of Dr. Manish Mehta, Albany Vascular

- Deployment of Medtronic Endurant
- 4 EndoAnchors
- No endoleak at 30-day CT

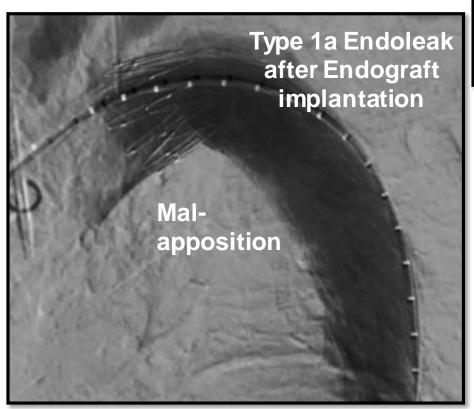

Heli-FX TAA Procedures

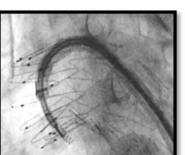


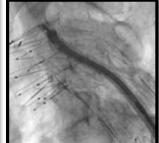

Primary Prophylactic Proximal & Distal shown

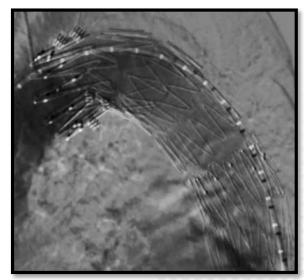
Primary or Revision with Cuff

Primary or Revision with Endoleak




Primary TEVAR – Short Proximal / Distal Necks





4 EndoAnchors implanted

Final Angio, leak resolved

Rationale for New ICD10-PCS Qualifier & Codes

- NTAP Application is under consideration for FY2015
- Cleared by the FDA <u>not as a suture</u> but as a Medical Device to:
 - Repair failed endografts
 - Improve an endograft's inherent fixation and sealing mechanisms, especially in patients with challenging neck anatomy
- Distinct procedure with its own beginning, middle & end from that of the endovascular graft procedure
- Requires unique & patented instruments for EndoAnchor deployment
 - EndoAnchor
 - Heli-FX Guide
 - Heli-FX Applier
- Requires additional operating room time of 30-45 minutes (not including set up time) to implant 5-6 EndoAnchors into the wall of the abdominal or thoracic Aorta

Rationale for New ICD10-PCS Qualifier & Codes

- Used with most commercially available endografts as a Supplement or in a Repair
- Need to address the multiple root operations occur during Primary & Revision EVAR and TEVAR
 - Implantation of multiple intraluminal devices (graft, cuff, Heli-FX),
 - Each serving different purposes during the same surgical session
- No distinct ICD9 -CM codes, therefore it is not possible to convert to ICD10 -PCS using GEM mapping
- Heli-FX is a new technology:
 - No comparable ICD9-CM, ICD10-PCS codes exist because there is no other FDA approved implantable device which serve the same function

ICD10-PCS Coding Proposal Summary

- Proposing the creation of (1) qualifier and new and separate codes for the Heli-FX when performed in the abdominal and thoracic regions. Root Operations for these regions could be:
 - Lower Artery body section
 - Supplement Heli-FX is an add-on procedure during primary/revision EVAR
 - Repair Heli-FX is the parent procedure during revision EVAR
 - Heart and Great Vessel body section
 - Supplement Heli-FX is an add-on procedure during primary/revision TEVAR
 - Repair Heli-FX is the parent procedure during revision TEVAR (emerging procedure)
- Establish the Qualifier T, EndoVascular Graft Fastener
- To help coders quickly locate the new ICD10-PCS qualifier and codes
 - Place in the Medical/Surgical Section
 - Add the Heli-FX EndoAnchor System to the Device Key because it is a new technology

Coding Issue

Currently there no ICD9-CM and ICD10-PCS codes to capture the Heli-FX Stand-alone and Add-on procedures during EVAR and TEVAR

		EVAR	TEVAR
Heli-FX Add-On Procedure	Primary	Control of acute Endoleak and/or Hostile anatomy	Control of acute Endoleak and/or Hostile anatomy
	Revision	Control of Endoleak / repair of migration	Control of Endoleak / repair of migration
Heli-FX Stand-Alone Procedure	Revision of previous aneurysm repair	Control of Endoleak	Control of Endoleak

Rationale for new ICD10-PCS Codes

- Heli-FX is used with most commercially available endografts in multiple operations as outlined in Options 2-4 and initial ICD10 Application.
 - Operations are Introduction, Supplement, in a Revision or in a Repair
- Distinguish and capture the Heli-FX Stand-alone and Add-on procedures.
- There are no distinct ICD9-CM codes for Heli-FX Stand-alone and Add-on procedures, therefore conversion into ICD10-PCS using GEM mapping is not possible
- Heli-FX is a new technology:
 - No comparable ICD9-CM, ICD10-PCS codes which exist because there is no other FDA approved implantable device which serves the same function as the Heli-FX system.

ICD10-PCS Coding Request Summary

Option 4

Heli-FX Procedure	Lower Artery, Abdominal	Heart and Great Vessels, Thoracic	Section
Stand-alone during Revision EVAR or TEVAR	Operation: Revision	Operation: Revision	Medical-Surgical
Add-on during Primary EVAR and EVAR	Operation: Supplement,	Operation: Supplement	Medical -Surgical
Add-on during Revision EVAR and TEVAR	Operation: Revision	Operation: Revision	Medical-Surgical

- Create a new device character
- Because Heli-FX is a new technology add the Heli-FX System to the Device Key

Conclusion

- Heli-FX is a new & unique technology with significant clinical benefit as a stand alone and as an add-on in EVAR & TEVAR
- There are no other existing codes which are applicable to Heli-FX
- Heli-FX requires additional planning, operative steps, additional time, resources, and associated risks & therefore warrants its own specific coding

