Health System Dashboard Metrics: Intersectional Approach to Making Health Equity Gaps Visible and Actionable Ash Sutter Health

Kristen M.J. Azar^{1,2,,5}, Elleni M. Hailu³, Rachel Berkowitz⁴, Danielle Reno⁵, Morgana Walden⁵, Jeff Grey⁵, Alice Pressman^{1,2} ¹Sutter Health Institute for Advancing Health Equity; ² University of California, San Francisco, ³ University of California, Berkeley; ⁴San Jose State University; ⁵Sutter Health

BACKGROUND

- CMS Innovation Center has placed the advancement of health equity on their roadmaps as a strategic objective
- Data are crucial to identifying and closing equity gaps in healthcare outcomes, but the lack of robust analytics is an important barrier to progress (1)

• Sutter Health, a large integrated healthcare system in Northern CA, has developed **two novel health equity methods** that capture unique inequities across interacting social domains (2).

METHOD

- 4 ambulatory and 3 acute care key performance indicators
 - **<u>Ambulatory</u>**: HTN control, T2DM control, colorectal cancer \checkmark screening and breast cancer screening
 - <u>Acute</u>: Sepsis mortality, NTSV C-Section, 30-day Readmission \checkmark
- Each at the subgroup level representing the **intersection** of :
 - **Race** (5 categories)
 - Sex assigned at birth (2 categories)
 - Median household income for residential census tract (2 categories)
- Subgroup values are compared with national benchmarks

Method 1: Proportion of each subgroup that meets national health equity benchmark targets (the 90th percentile [P90] across systems contributing to HEDIS) and summarizes the number at or above the P90 target

Method 2: Ratio of proportion of a subgroup <u>not</u> meeting P90 target compared to the proportion of all individuals overall <u>not</u> meeting target; this ratio per subgroup is referred as the outcome equity ratio (OER)

OER greater than 1 = inequity

 $OER = \frac{P(NAG_{Subgroup})}{-}$ $P(NAG_{Overall})$

RESULTS

We present simulated data to demonstrate each metric for Type 2 Diabetes control

POPULATION SIMULATED TO MIRROR SUTTER DEMOGRAPHICS

91,304 individuals with T2DM

- Race/ethnicity: 46.7% non-Hispanic white (NHW), 6.7% NH black (NHB), 24.1% NH Asian (NHA), 22% were Hispanic and <1% were NH American Indian or Alaska Native (NHAIAN)
- <u>Sex</u>: 49.2 female
- <u>Median Income:</u> 86.8% from high income census tract Overall, 78% achieved HbA1c control per the HEDIS metric definition ("at goal")

Table 1. Intersectional Subgroup Matrix

		Income < 2*FPL		Income >= 2*FPL		
Measure Met?	Race Ethnicity	Female	Male	Female	Male	Grand Total
No	Hispanic	860	973	3274	3364	8471
	NH Asian	90	125	1452	1565	3232
	NH Black	278	196	463	424	1361
	NH American Indian or Alaska Native	14	17	63	40	134
	NH White	520	494	2866	3004	6884
Yes	Hispanic	1250	1000	5103	4325	11678
	NH Asian	508	340	8658	9262	18768
	NH Black	435	320	2145	1862	4762
	NH American Indian or Alaska Native	16	16	100	100	232
	NH White	2371	2263	14459	16689	35782
	Grand Total	6342	5744	38583	40635	91304

Method 1: The percentag
goal" for HbA1C (HbA1C
compared each of these
benchmark (65.33% for H

	Race/Ethnicity			
Hispanic				
NH Asian				
NH Black				
NH American Ir	idian or Alaska Nativ			
NH White				

- household income
- High of 85.6% for female patients who self-identify as NHA with high-income • 9 subgroups did not meet the national benchmark standard
- Inequities were observed for all Hispanic • Inequities were observed for all Hispanic and NHAIAN individuals across income and individuals across income and sex sex categories (OER ranges: 1.78-2.24 and categories and low income NHB and 1.30-2.34, respectively) NHAIAN

- First method allows identification of whether or not sub-groups meet the P90 benchmark but this method does not allow for observation of relative inequity across sub-groups (an approach which could support more strategic intervention development within a healthcare system)
- Second method is focused on internal equity between patient subgroups, regardless of whether the overall quality standards are met
- We recommend a blended approach, utilizing both metrics to obtain a complete assessment which can inform health system actions to mitigate disparities in outcomes.
- Leveraging both methods incorporates intersectional, underlying drivers of inequities:
 - to allow for more precise identification of population subgroups with unmet needs and inequitable outcomes
 - to facilitate the development of focused and effective interventions to close the identified gaps.

REFERENCES

care#:~:text=Strategies%20for%20Combatting%20Racism%20in%20Health%20Care%20Examining,Reviewing%20clinical%20algorithms%20that%20erroneously%20rely%20on%20racev (2) Crenshaw, K. (1989) 'Demarginalizing the Intersection of Race and Sex: A Black Feminist Critique of Antidiscrimination Doctrine, Feminist Theory and Antiracist Politics', The University of Chicago Legal Forum, pp. 139–167.

ges of active patients with T2DM "at C >8.0%) in each subgroup; We percentages to the national P90 HbA1C). Cells in **red** do not meet goal

	Income < 2*FPL		Income >= 2*FPL		
	Female	Male	Female	Male	
	59.2%	50.7%	60.9%	56.2%	
	84.9%	73.1%	85.6%	85.5%	
	61.0%	62.0%	82.2%	81.5%	
/e	53.3%	48.5%	61.3%	71.4%	
	82.0%	82.1%	83.5%	84.7%	

Proportions "at goal" varied by subgroup • Low of 48.5%, for male patients who selfidentify as NHAIAN with low median

Method 2: Ratio of percentages "**not meeting goal**" for HbA1C in a particular subgroup to percentage in overall population. Cells in **red** have OER > 1

Pace /Ethnicity	Income	< 2*FPL	Income >= 2*FPL		
Race/Ethnicity	Female	Male	Female	Male	
Hispanic	1.85	2.24	1.78	1.99	
NH Asian	0.68	1.22	0.65	0.66	
NH Black	1.77	1.73	0.81	0.84	
NH American Indian or Alaska Native	2.12	2.34	1.76	1.30	
NH White	0.82	0.81	0.75	0.69	

- Inequities in HbA1C metric (OER >1) were identified for 11 of the 20 subgroups
- Across all non-White racial/ethnic groups, greater inequity in HbA1C control among low income male patients
- Among low-income males, the highest inequities were observed among NHAIAN (OER=2.34), Hispanic (OER= 2.24), and Non-Hispanic Black (OER=1.73) individuals

CONCLUSIONS

#HealthEquityCon23

https://www.commonwealthfund.org/publications/2021/oct/confronting-racism-health-