Superseded Local Coverage Determination (LCD)

Non-Invasive Fractional Flow Reserve (FFR) for Stable Ischemic Heart Disease


Expand All | Collapse All
To see the currently-in-effect version of this document, go to the section.

Contractor Information

LCD Information

Document Information

LCD Title
Non-Invasive Fractional Flow Reserve (FFR) for Stable Ischemic Heart Disease
Proposed LCD in Comment Period
Source Proposed LCD
Original Effective Date
For services performed on or after 04/26/2021
Revision Effective Date
Revision Ending Date
Retirement Date
Notice Period Start Date
Notice Period End Date
AMA CPT / ADA CDT / AHA NUBC Copyright Statement

CPT codes, descriptions and other data only are copyright 2022 American Medical Association. All Rights Reserved. Applicable FARS/HHSARS apply.

Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein.

Current Dental Terminology © 2022 American Dental Association. All rights reserved.

Copyright © 2022, the American Hospital Association, Chicago, Illinois. Reproduced with permission. No portion of the American Hospital Association (AHA) copyrighted materials contained within this publication may be copied without the express written consent of the AHA. AHA copyrighted materials including the UB‐04 codes and descriptions may not be removed, copied, or utilized within any software, product, service, solution or derivative work without the written consent of the AHA. If an entity wishes to utilize any AHA materials, please contact the AHA at 312‐893‐6816.

Making copies or utilizing the content of the UB‐04 Manual, including the codes and/or descriptions, for internal purposes, resale and/or to be used in any product or publication; creating any modified or derivative work of the UB‐04 Manual and/or codes and descriptions; and/or making any commercial use of UB‐04 Manual or any portion thereof, including the codes and/or descriptions, is only authorized with an express license from the American Hospital Association. The American Hospital Association (the "AHA") has not reviewed, and is not responsible for, the completeness or accuracy of any information contained in this material, nor was the AHA or any of its affiliates, involved in the preparation of this material, or the analysis of information provided in the material. The views and/or positions presented in the material do not necessarily represent the views of the AHA. CMS and its products and services are not endorsed by the AHA or any of its affiliates.

CMS National Coverage Policy

Title XVIII of the Social Security Act, §1862 (a)(1)(A) allows coverage and payment for only those services that are considered to be reasonable and necessary for the diagnosis or treatment of illness or injury or to improve the functioning of a malformed body member.

Title XVIII of the Social Security Act, §1862 (a)(1)(D) Items and services related to research and experimentation.

Title XVIII of the Social Security Act, §1862 (a)(7) states Medicare will not cover any services or procedures associated with routine physical checkups.

Title XVIII of the Social Security Act, §1833 (e) prohibits Medicare payment for any claim which lacks the necessary information to process the claim.

42 CFR §410.32 indicates that diagnostic tests may only be ordered by the treating physician (or other treating practitioner acting within the scope of his or her license and Medicare requirements).

CMS Internet-Only Manual, Pub 100-03, Medicare National Coverage Determinations Manual, Chapter 1, Part 4, §220.

The Protecting Access to Medicare Act (PAMA) of 2014, Section 218(b), established a new program to increase the rate of appropriate advanced diagnostic imaging services provided to Medicare beneficiaries.

42 CFR §414.92 codifies the Appropriate use Criteria Program policies.

Coverage Guidance

Coverage Indications, Limitations, and/or Medical Necessity

FDA-approved FFRct technology may be considered reasonable and necessary in the management of patients with symptomatic, stable ischemic heart disease (SIHD), when the CCTA analysis is completed and demonstrates one of the following criteria:

  1. Left main disease with intermediate coronary stenosis (lumen diameter reduction of 30-50%); OR
  2. Proximal and mid-left anterior descending (LAD) coronary artery disease with intermediate coronary stenosis (lumen reduction 40-70%); OR
  3. Proximal and mid-left circumflex disease with intermediate coronary stenosis (lumen reduction 40-70%); (considered equivalent to two-vessel disease); OR
  4. Proximal two- or three- vessel disease with intermediate coronary stenosis in at least two vessels; OR
  5. Right coronary disease with intermediate (lumen reduction 40-70%) coronary stenosis.

FFRct is not considered reasonable in the following clinical circumstances:

  1. Severe obesity (BMI > 35 kg/m2)
  2. Prior placement of prosthetic valves
  3. Known severe aortic stenosis
  4. Prior placement of grafts in coronary bypass surgery
  5. Suspicion of acute coronary syndrome (where MI or unstable angina have not been ruled out)
  6. Intracoronary metallic stent
  7. Status post-heart transplantation
  8. Recent MI (30 days or less)
  9. Prior pacemaker or defibrillator lead placement
  10. Newly diagnosed systolic heart failure, with no prior left heart catherization
  11. Left main coronary artery disease with Intermediated Coronary Stenosis (lumen reduction less than or equal to 30%
  12. Non-obstructing stenosis (<50% of all major epicardial vessels) on CTA or catherization in the past twelve months, in the absence of a new symptom complex.

This service should be performed in patient with stable coronary symptoms. It should not be performed until after the base study (CCTA) has been completed and interpreted. If higher grade stenoses (i.e. greater than 70%) are present, this study is not medically necessary, as the patient should proceed to catheterization. Similarly, low-grade stenoses (less than 30%) do not require additional confirmatory data. If more than two intermediate risk coronary lesions are identified, the clinical situation is considered high risk, and the patient should proceed directly to catheterization.


The concept of invasive fractional flow reserve as a diagnostic tool was introduced in the early 1990’s. The FAME and FAME-II trials supported an FFR-wire guided revascularization strategy as opposed to purely angiographically guided revascularization.1 The National Cardiovascular Data Registry demonstrated a low diagnostic yield from traditional exercise stress testing when the patient progressed to invasive coronary angiography. Fractional flow reserve is considered the gold standard for assessing the hemodynamic significance of intermediate coronary stenosis by measuring the pressure difference across a coronary artery stenosis.2 Intracoronary catheter pressure measurement before and after the stenosis are compared, and FFR of 0.80 correlates with a 20% pressure drop after the stenosis. This measurement can help determine if the vessel narrowing is limiting blood flow and assess the need for revascularization or stenting. Clinical studies have demonstrated that invasive FFR reduces unnecessary stenting procedures and associated risk.1,3 The use of invasive FFR is supported by the Society of Cardiac Angiography and Interventions (SCAI) and American College of Cardiology (ACC).4,5

Noninvasive fractional flow reserve is an alternative modality to gain this information without the need for invasive intracoronary instrumentation in patients with known or suspected coronary artery disease (CAD). FFRct is a fractional flow reserve derived from computed tomography that relies on computer-assisted processing of coronary computed tomographic angiography (CCTA) images to estimate coronary blood flow changes related to coronary artery stenoses. Based on physical theories of fluid dynamic modeling, FFRct is a post-processing software for analyzing previously acquired digital imaging from CCTA. Limitations include that the technology is dependent on the image quality of the CCTA, the images must be sent out for post-processing; therefore, real time results are not feasible, and how to apply FFRct results to clinical practice is still in development. Emerging technologies include virtual FFR (vFFR), where the measurements are based on a 3-D image of coronary vessels created by the software using x-ray angiographic imaging. Angio-derived FFR the FFR is calculated at the time of coronary angiogram.

Summary of Evidence

The analysis of coronary artery disease by non-invasive coronary computed tomographic analysis has been limited by low specificity. The addition of computer derived flow analysis of the CTA data has added the potential for a non-invasive test that yields both anatomic and functional data. This emerging technology aims to reduce the need for invasive cardiac procedures and associated risks.

The DeFACTO study (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography) compared the first iteration of FFRct technology against invasive angiography and FFR in patients with suspected or known CAD, but did not achieve the pre-specified target accuracy.2 Another study, DISCOVER-FLOW, demonstrated an accuracy of 84.6%.6 A second iteration of the FFRct algorithm was tested against invasive angiography with FFR in 254 patients with suspected CAD in the NXT (Analysis of Coronary Blood Flow Using CT Angiography-Next Steps) trial. This study reported a diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 81%, 86%, 79%, 65% and 83% respectively.7 In this trial, 484 vessels in 254 patients and found that FFRct significantly improved the per patient specificity and PPV (32 to 84% and 40 to 65%, respectively) and the per vessel specificity and PPV (60 to 86% and 33 to 67%, respectively) compared with CTA. However, this does not translate into benefit compared to CTA alone for identifying patients whose invasive FFR will warrant intervention, and 35% of the abnormal results were false positives.8

The PROMISE study demonstrated that patients with an FFRct less than or equal to 0.80 were significantly more likely to have coronary revascularization and to meet the composite endpoint of major adverse cardiac events or revascularization than those with FFRct greater than 0.80.9 The study also showed that reserving invasive coronary angiography for patients with FFRct less than or equal to 0.80 could reduce the rate of performing invasive coronary angiography by 28%. The initial trial did include a CCTA strategy, which did not improve outcomes after two years of follow-up. The study, a retrospective, observational, cohort study, also highlighted the dependence of FFRct on the quality of the CCTA images being post-processed, with one-third of the images submitted for review of insufficient quality.10

The FFRct RIPCORD study involved 200 patients and compared the management of patients by cardiologists with and without the addition of FFRct data to the baseline CTA data. The additional FFRct data changed the management plan for 72 patients (36%) based on lesion severity assessment. With inclusion of changes in the PCI target vessel, patient management was altered in 44% of patients.11

In the PLATFORM study, 584 patients were allocated to noninvasive or invasive coronary angiography cohorts. Each cohort was divided into standard of care and FFRct guided care groups. The 90-day primary end point of invasive catheterization without obstructive coronary artery disease occurred in significantly fewer patients with FFRct guided care than usual care in both cohorts. This prospective, longitudinal comparative effectiveness study demonstrated that in an appropriately selected population for CCTA, 88% of the studies were of sufficient quality to perform FFRct on the derived images.12,13 From the initial group of patients, 116 were identified to undergo ICA. Fifty-two underwent CTA/FFRct resulting in the cancellation of the ICA in 40 (77%). At one year, they reported no major cardiovascular events in this group.14 While this is promising, there are significant limitations. The group was not allocated randomly, and patients in the FFRct arm were younger, had a lower incidence of diabetes, and lower pretest probability of obstructive CAD. The small sample size was not powered to show a difference in clinical events and major cardiac events; therefore, this data cannot be extrapolated to a larger, more diverse population.

The ADVANCE registry (Assessing Diagnostic Value of Non-Invasive FFRct in Coronary Care) is a large prospective registry that included 5,083 patients with symptoms suggestive of angina from 38 centers in Europe, North America and Japan. There was a change in management pathway in 66% of patients, after FFRct data were available compared with CCTA alone.15 At one year, the authors report that patients with FFRct ≤0.80 were less frequently referred for ICA (from 62.9% to 252.9%, P < 0.001) and reported the prevalence of major events was low and similar between the cohorts.16 This data is limited by the observational nature of the study with the inability to adjust for confounding factors such as additional studies being used to make the ultimate decision of whether or not to proceed with ICA, the risk from multiple biases including referral bias, attrition bias, and other bias, and variable experience with FFRct among the study sites.

A recent Danish observational study that included 3674 patients with suspected coronary artery disease who underwent CCTA with FFRct for stenosis between 30% and 90% had supportive findings for use of this technology in care management. Patients with FFRct greater than 0.8 had similar outcomes to patients without obstructive disease on CCTA (i.e. less than 30%). By contrast, patients with FFRct ≤0.8 had significantly more major adverse coronary events (9.6% vs. 1.4%).17

A 2017 systematic review by Cook et al. evaluated 908 vessels from 536 patients in five studies. They reported that the per-vessel diagnostic accuracy of FFRct was 81.9% (95% CI: 79.4-84.4%). They further broke down the diagnostic accuracy of FFRct by the FFRct values and reported values below 0.06, 0.06-0.07, 0.70-.80, 0.80-0.90, and above 0.9 was 86.4%, 74.7%, 46.1%, 87.3% and 97.9%, respectively. This data showed clustering of large numbers of FFRct values in the >0.9 range, where the correlation between FFRct and FFR was very high. However, when approaching the 0.8 level, the correlation becomes less robust. Of significance, the FFRct correlation showed 82% overall diagnostic accuracy through threshold was met for FFRct values lower than 0.63 or above 0.83; however, the correlation between the 0.7 to 0.8 group was notably lower at 46.1%. More stringent 95% and 98% diagnostic accuracy thresholds were met for FFRCT values lower than 0.53 or above 0.93 and lower than 0.47 or above 0.99, respectively.18

The 2019 PACIFIC trial is a prospective study comparing 208 patients with suspected stable CAD who underwent coronary CTA with FFRct calculations, SPECT, PET, and invasive FFR. 83% of vessels could be evaluated with FFRct, which demonstrated a diagnostic accuracy, sensitivity, and specificity of 87%, 90%, and 86% on a per-vessel basis and 78%, 96%, and 63% on a per-patient basis, respectively. FFRct outperformed coronary CTA and SPECT, and PET for vessel-specific ischemia, while PET performed better for per-patient and intention-to-diagnosis analysis.19

The 2019 ReASSESS trail is a single centered prospective study where 143 patients scheduled to undergo invasive coronary angiogram with stable angina also underwent FFRct and SPECT. They found FFRct had similar overall diagnostic accuracy, and FFRct had higher diagnostic sensitivity than SPECT (91% (95% CI:81% to 97%) versus 41% (95% CI; 29% to 55%; p<0.001). The specificity of FFRct compared to invasive FFR was 55% (86% SPECT) with PPV a 58% and overall accuracy of 70%. In analyzing diagnostic performance for detection of coronary artery disease on an intention to treat basis positive predictive value was 47% with accuracy of 63%.20

A 2020 meta-analysis of seventy-seven studies found that FFRct identifies clinically significant stenosis in patients with suspected CAD with a high sensitivity (mean 85%, 95% CI: 81-88%), but low to moderate specificity (mean 69%, 95% CI: 64 to 74%).21

Additional literature recommended by the ACC provided better insight into current anatomic applications and the accuracy of the determinations. The SYNTAX family of randomized controlled trials demonstrated that PCI or stenting is a viable option in patients with three-vessel disease and applying this technology to decision-making regarding CABG or PCI. Use of FFRct to determine a functional SYNTAX Score (in the SYNTAX III study) reclassified 30% of patients to a lower score.22-24 ACC also provided additional literature supporting the accuracy of CCTA in obese patients.25,26

Accuracy with FFRct has been validated in several studies compared to invasive FFR to be around 80% in patients with stable CAD. While non-invasive FFRCT shows promise as comparable or even superior performance to some existing technologies, such as stress test or SPECT, it falls behind invasive FFR in accuracy and PPV. The PPV ranges from 52-65% among the various studies.7,19,20 There is also a risk of false positive of up to 35%, so confirmation at the time of invasive coronary angiogram confirmation of the lesion is often performed prior before stent placement.8

Societal Guidance

The use of invasive FFR is endorsed by multiple societies, including the Society of Cardiac Angiography and Interventions (SCAI) and American College of Cardiology (ACC)4,27 and European Society of Cardiology.28 However, there is no societal guidance published at this time from major cardiac societies that address the role of FFRct.


Analysis of Evidence (Rationale for Determination)

The formal CAC was convened by Noridian on June 18, 2019 where these and other studies were discussed by the subject matter experts. Based on a review of the literature, there was a consensus that FFRct is a useful modality in the guidance of and assessment of stable coronary artery disease. Suspicion for acute coronary syndrome (where acute myocardial infarction or unstable angina has not been ruled out) is not considered by Medicare to be included in the assessment of stable coronary artery disease.

Various opinions were solicited about the population (and characteristics of the population) that would specifically benefit from this service. The Noridian medical policy staff has concluded that FFRct is clinically useful in the re-interpretation of CCTA data and guiding the downstream management of patients with intermediate coronary stenosis 40-70% stenosis, established by CCTA. Two issues for evolving discussion were raised during the Noridian CAC. The first involves the growing assurance of technical quality of the study in obese patients. Many centers extend this technology to patients with a BMI over 35 kg/m2. Medicare will adjust its position to accommodate a more current standard. There was also robust discussion of use in Acute Coronary Syndrome. Until the evidence-based literature defines this population of patients more consistently, and professional medical society guidelines accept FFRct in more acute (and potentially less stable) clinical settings, Noridian will maintain its current position. Subsequent discussions with the ACC and Commentary in other jurisdictions (including J15 CGS) introduced additional literature, particularly Sonck et al., supporting the effectiveness of this technology in triple vessel disease, and this provision was included.29 Additionally, a 2020 study, Budde et al., continues to raise questions of the efficacy of FFRct in heart transplant patients, and so this exclusion was maintained.30 ACC provided support for inclusion/expansion of vessels that anatomically may be responsible for coronary events and based on the supporting evidence and societal input, these changes were made in the inclusion criteria.

While FFRct shows an exciting potential for reducing the need for an invasive coronary angiogram, the precise role for its use has not been entirely determined. The reduced PPV of FFRct between 52-65% and the low correlation in the 0.7-0.8 lesions range of 46.1% suggest the correlation between FFRct and invasive FFR in this group is a tenuous 50%. The role of FFRct and potential benefit in intermediate stenosis between 40-70% has been most clearly established. However, there is insufficient outcome data to define management changes based on FFRct for high grade (>70%) lesions that would typically triage to catheterization. There is both limited evidence and a lack of major societal guidance on the use of FFRct to guide ischemic heart disease revascularization.

General Information

Associated Information


Sources of Information

U.S. Food and Drug Administration (FDA), Center for Devices and Radiologic Health. Coronary Vascular Physiologic Simulation Software: Heartflow FFRct. DeNovo Number: DEN 130045. Rockville, MD: FDA November 6, 2013.

Abbara S, Blanke P, Maroules CD, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography J Cardio Computed Tomog. 2016(10): 435-449.

Washington State Health Care Authority, Health Technology Clinical Committee. Coronary Computed Tomographic Angiography. Final Findings and Coverage Decision. Olympia, WA: Washington State Health Care Authority; May 8, 2009.

Noridian Healthcare Solutions- Carrier Advisory Committee- June 18, 2019.

  1. De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. 2012;367(11):991-1001.
  2. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. 2012;308(12):1237-1245.
  3. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. 2009;360(3):213-224.
  4. Patel MR, Calhoon JH, Dehmer GJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary Revascularization in Patients With Stable Ischemic Heart Disease : A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society of Thoracic Surgeons. J Nucl Cardiol. 2017;24(5):1759-1792.
  5. ECRI. Product Brief: FFRct Software (HeartFlow, Inc.) for Evaluating Coronary Artery Disease. 2019; Product Brief - Guidance. Available at: Accessed 03/19/2020, 2020.
  6. Nakanishi R, Matsumoto S, Alani A, et al. Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies. Int J Cardiovasc Imaging. 2015;31(6):1251-1259.
  7. Norgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). Journal Of The American College Of Cardiology. 2014;63(12):1145-1155.
  8. Hecht HS, Narula J, Fearon WF. Fractional Flow Reserve and Coronary Computed Tomographic Angiography: A Review and Critical Analysis. Circ Res. 2016;119(2):300-316.
  9. Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC Cardiovasc Imaging. 2017;10(11):1350-1358.
  10. Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. 2015;372(14):1291-1300.
  11. Curzen NP, Nolan J, Zaman AG, Norgaard BL, Rajani R. Does the Routine Availability of CT-Derived FFR Influence Management of Patients With Stable Chest Pain Compared to CT Angiography Alone?: The FFRCT RIPCORD Study. JACC Cardiovasc Imaging. 2016;9(10):1188-1194.
  12. Douglas PS, De Bruyne B, Pontone G, et al. 1-Year Outcomes of FFRCT-Guided Care in Patients With Suspected Coronary Disease: The PLATFORM Study. J Am Coll Cardiol. 2016;68(5):435-445.
  13. Douglas PS, Pontone G, Hlatky MA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. 2015;36(47):3359-3367.
  14. Colleran R, Douglas PS, Hadamitzky M, et al. An FFRCT diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one-year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFRCT: Outcome and Resource Impacts) study. Open Heart. 2017;4(1):e000526.
  15. Fairbairn TA, Nieman K, Akasaka T, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. European heart journal. 2018;39(41):3701-3711.
  16. Nous F, Budde RPJ, Fairbairn TA, et al. Temporal changes in FFRCT-Guided Management of Coronary Artery Disease - Lessons from the ADVANCE Registry. J Cardiovasc Comput Tomogr. 2020.
  17. Norgaard BL, Terkelsen CJ, Mathiassen ON, et al. Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol. 2018;72(18):2123-2134.
  18. Cook CM, Petraco R, Shun-Shin MJ, et al. Diagnostic Accuracy of Computed Tomography-Derived Fractional Flow Reserve : A Systematic Review. JAMA Cardiol. 2017;2(7):803-810.
  19. Driessen RS, Danad I, Stuijfzand WJ, et al. Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis. J Am Coll Cardiol. 2019;73(2):161-173.
  20. Sand NPR, Veien KT, Nielsen SS, et al. Prospective Comparison of FFR Derived From Coronary CT Angiography With SPECT Perfusion Imaging in Stable Coronary Artery Disease: The ReASSESS Study. JACC Cardiovasc Imaging. 2018;11(11):1640-1650.
  21. Pontone G, Guaricci AI, Palmer SC, et al. Diagnostic performance of non-invasive imaging for stable coronary artery disease: A meta-analysis. Int J Cardiol. 2020;300:276-281.
  22. Collet C, Miyazaki Y, Ryan N, et al. Fractional Flow Reserve Derived From Computed Tomographic Angiography in Patients With Multivessel CAD. Journal of the American College of Cardiology. 2018;71(24):2756-2769.
  23. Nam CW, Mangiacapra F, Entjes R, et al. Functional SYNTAX score for risk assessment in multivessel coronary artery disease. Journal of the American College of Cardiology. 2011;58(12):1211-1218.
  24. Escaned J, Collet C, Ryan N, et al. Clinical outcomes of state-of-the-art percutaneous coronary revascularization in patients with de novo three vessel disease: 1-year results of the SYNTAX II study. European heart journal. 2017;38(42):3124-3134.
  25. Zimmerman SL, Kral, B.G., and Fishman, E.K. Diagnostic quality of dual source coronary CT examinations performed without heart rate control: importance of obesity and heart rate on image quality. J Comput Assist Tomogr 2014.;38(6):949-955.
  26. Mangold S, Tesche C, Wichmann J, et al. Diagnostic accuracy of coronary CT angiography using 3(rd)1-generation dual-source CT and automated tube voltage selection: Clinical application in a non-obese and obese patient population. Eur Radiolo. 2017;27(6):2298-2308.
  27. Lotfi A, Davies JE, Fearon WF, Grines CL, Kern MJ, Klein LW. Focused update of expert consensus statement: Use of invasive assessments of coronary physiology and structure: A position statement of the society of cardiac angiography and interventions. Catheter Cardiovasc Interv. 2018;92(2):336-347.
  28. Knuuti J. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020;41:407-477.
  29. Sonck Jea. Diagnostic performance of angiography derived FFR, a systematic review. Eur Heart J. 2018;39:3314-3321.
  30. Budde R, Nous F, Roest S, et al. Non-Invasive Functional Coronary Artery Evaluation by CT-Derived Fractional Flow Reserve (FFRct) in Heart Transplant Patients. J Heart Lung Transplant. 2020;39(4S):S62.

Revision History Information


Associated Documents

Related National Coverage Documents
Public Versions
Updated On Effective Dates Status
07/27/2022 09/18/2022 - N/A Currently in Effect View
03/04/2021 04/26/2021 - 09/17/2022 Superseded You are here



Read the LCD Disclaimer