SUPERSEDED Local Coverage Determination (LCD)

Micro-Invasive Glaucoma Surgery (MIGS)


Expand All | Collapse All
Proposed LCD
Proposed LCDs are works in progress that are available on the Medicare Coverage Database site for public review. Proposed LCDs are not necessarily a reflection of the current policies or practices of the contractor.
To see the currently-in-effect version of this document, go to the section.

Document Note

Note History

Contractor Information

LCD Information

Document Information

Source LCD ID
Original ICD-9 LCD ID
Not Applicable
LCD Title
Micro-Invasive Glaucoma Surgery (MIGS)
Proposed LCD in Comment Period
Source Proposed LCD
Original Effective Date
For services performed on or after 12/01/2017
Revision Effective Date
For services performed on or after 12/01/2019
Revision Ending Date
Retirement Date
Notice Period Start Date
Notice Period End Date
AMA CPT / ADA CDT / AHA NUBC Copyright Statement

CPT codes, descriptions and other data only are copyright 2023 American Medical Association. All Rights Reserved. Applicable FARS/HHSARS apply.

Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein.

Current Dental Terminology © 2023 American Dental Association. All rights reserved.

Copyright © 2024, the American Hospital Association, Chicago, Illinois. Reproduced with permission. No portion of the American Hospital Association (AHA) copyrighted materials contained within this publication may be copied without the express written consent of the AHA. AHA copyrighted materials including the UB‐04 codes and descriptions may not be removed, copied, or utilized within any software, product, service, solution or derivative work without the written consent of the AHA. If an entity wishes to utilize any AHA materials, please contact the AHA at 312‐893‐6816.

Making copies or utilizing the content of the UB‐04 Manual, including the codes and/or descriptions, for internal purposes, resale and/or to be used in any product or publication; creating any modified or derivative work of the UB‐04 Manual and/or codes and descriptions; and/or making any commercial use of UB‐04 Manual or any portion thereof, including the codes and/or descriptions, is only authorized with an express license from the American Hospital Association. The American Hospital Association (the "AHA") has not reviewed, and is not responsible for, the completeness or accuracy of any information contained in this material, nor was the AHA or any of its affiliates, involved in the preparation of this material, or the analysis of information provided in the material. The views and/or positions presented in the material do not necessarily represent the views of the AHA. CMS and its products and services are not endorsed by the AHA or any of its affiliates.


Issue Description
Issue - Explanation of Change Between Proposed LCD and Final LCD

CMS National Coverage Policy

Language quoted from Centers for Medicare and Medicaid Services (CMS), National Coverage Determinations (NCDs) and coverage provisions in interpretive manuals is italicized throughout the policy. NCDs and coverage provisions in interpretive manuals are not subject to the LCD Review Process (42 CFR 405.860[b] and 42 CFR 426 [Subpart D]). In addition, an administrative law judge may not review an NCD. See Section 1869(f)(1)(A)(i) of the Social Security Act.

Unless otherwise specified, italicized text represents quotation from one or more of the following CMS sources:

Title XVIII of the Social Security Act (SSA):

Section 1862(a)(1)(A) excludes expenses incurred for items or services which are not reasonable and necessary for the diagnosis or treatment of illness or injury or to improve the functioning of a malformed body member.

Section 1862(a)(1)(D) refers to limitations on items or devices that are investigational or experimental.

Section 1833(e) prohibits Medicare payment for any claim which lacks the necessary information to process the claim.

CMS Publications:

CMS Publication 100-02, Medicare Benefit Policy Manual, Chapter 14,

    10 Coverage of Medical Devices

CMS Publication 100-04, Medicare Claims Processing Manual, Chapter 23,

    30 Services paid under the Medicare Physicians Fee Schedule

CMS Publication 100-08, Medicare Program Integrity Manual, Chapter 13,

    5.1 Reasonable and necessary provisions in LCDs
    7.1 Evidence supporting LCDs.

Coverage Guidance

Coverage Indications, Limitations, and/or Medical Necessity

This LCD addresses use of a group of new surgical procedures for glaucoma referred to as micro-invasive glaucoma surgery (MIGS). NGS considers one iStent, iStent inject, or Hydrus device per eye medically reasonable and necessary for the treatment of adults with mild or moderate open-angle glaucoma and a cataract when the individual is currently being treated with an ocular hypotensive medication and the procedure is being performed in conjunction with cataract surgery. One XEN45 device per eye is covered for the management of refractory glaucoma, defined as prior failure of filtering/cilioablative procedure and/or uncontrolled IOP (progressive damage and mean diurnal medicated IOP ≥20 mm Hg) on maximally tolerated medical therapy (i.e., ≥4 classes of topical IOP-lowering medications, or fewer in the case of tolerability or efficacy issues). XEN45 insertion must be performed by an ophthalmologist with experience with trabeculectomy and bleb management.


Summary of Evidence

Primary open-angle glaucoma (POAG) has a prevalence in the US of 2% of adults over 40 years old, or about 2.2 million people, and is expected to increase to 3.3 million in 2020 as the population ages (1). POAG is a chronic, progressive optic neuropathy in adults in which there is a characteristic acquired atrophy of the optic nerve and loss of retinal ganglion cells and their axons. It is associated with an increased intraocular pressure (IOP), due to a buildup of aqueous fluid within the eye which can lead to visual field loss and optic nerve damage, usually without any associated pain or discomfort. The increased IOP is secondary to an imbalance between aqueous fluid secretion and fluid outflow despite an open angle. Nearly 40% of those with otherwise characteristic POAG may not have elevated IOP measurements (1).

In the primary (conventional) outflow pathway from the eye, aqueous humor passes through the trabecular meshwork, enters a space lined with endothelial cells (Schlemm canal), drains into collector channels, and then into the aqueous veins. Increases in resistance in the trabecular meshwork or the inner wall of the Schlemm canal can disrupt the balance of aqueous humor inflow and outflow, resulting in an increase in IOP and glaucoma risk.

The goal in POAG is to reduce the IOP to slow the development of optic nerve damage. The IOP can be reduced by medical treatment or surgery, alone or in combination. IOP above 21 mmHg has been shown to increase rates of visual field loss. However, because of the differences in susceptibility to pressure-related disc damage among POAG patients, pressure-lowering treatments are aimed at achieving a lower “target” pressure individualized to each patient’s baseline IOP in which glaucomatous damage occurred.

When the maximum tolerated medical therapy fails to control progression of glaucomatous optic neuropathy, surgical care is considered the next treatment option. Traditional filtration surgery includes trabeculectomy (including ExPress shunt) and aqueous drainage implants (Ahmed, Baerveldt, Molteno). Trabeculectomy uses the patient’s own sclera to create a fistula to the subconjunctival space over the sclera superiorly. Aqueous drainage implants use silicone/plastic tubing and large plates to shunt aqueous to the subconjunctival space in the equatorial region of the eyeball.

While IOP outcomes are generally worse with aqueous drainage implants compared with trabeculectomy, complications such as hypotony (low pressure), and postoperative infection are reduced. However, failure rates are similar (approximately 10% of devices fail annually), and shunts still have complications, including corneal endothelial failure and erosion of the overlying conjunctiva.

The term micro-invasive or minimally invasive glaucoma surgery (MIGS) refers to a group of newer surgical procedures that are performed by using an ab interno (from inside the eye) approach via gonioscopic guidance and involve minimal trauma to ocular tissues. In contrast to external filtration surgeries such as trabeculectomy and aqueous tube shunt, these procedures are categorized as internal filtration surgeries. Compared with traditional filtration surgery, MIGS holds the promise of faster recovery time and less severe complications.

It is this potentially improved safety profile that opened up the indications for MIGS to include patients with early-stage glaucoma to reduce the burden of medications and problems with compliance (due to eye drop application difficulty, cost, cosmetic effects, and frequency). Another area of investigation is patients with glaucoma who require cataract surgery. An advantage of ab interno shunts is that they may be inserted into the same incision and at the same time as cataract surgery. In addition, most devices do not preclude subsequent trabeculectomy if needed. Therefore, health outcomes of interest are the IOP achieved, reduction in medication use, ability to convert to trabeculectomy, complications, and device durability. 

There are five FDA approved/cleared micro-invasive surgical stents, the iStent Trabecular Micro-Bypass Stent (2011), the CyPass Micro-Stent System (July, 2016), the XEN Glaucoma Treatment System (Nov., 2016), the Hydrus Microstent (Aug., 2018), and the iStent inject (Jun, 2018). The iStent is a small (1 mm x 0.5 mm) L-shaped titanium device that is inserted into Schlemm’s canal to augment the natural outflow system. The iStent inject system comprises 2 heparin-coated titanium stents (each having 0.23 mm diameter x 0.36 mm height, 0.08 mm central lumen diameter, and four 0.05 mm side outlets to allow for multidirectional outflow), both inserted into Schlemm’s canal using a pre-loaded auto-injection trocar. Hydrus is a 8 mm nitinol, crescent-shaped microstent with alternating spines for support and windows to provide outflow, also placed into Schlemm’s canal. CyPass is a 6.35 mm long fenestrated microstent made of biocompatible polyimide inserted into the supraciliary space, thus using an alternative outflow system. The XEN45 is a 6 mm long porcine-derived gelatin stent inserted into the subconjunctival space, bypassing the natural outflow system.

iStent, iStent inject, Hydrus and CyPass were FDA approved (Cypass recalled by FDA for safety concerns Sept., 2018) for use in combination with cataract surgery to reduce IOP in adults with mild or moderate OAG and a cataract that are currently being treated with medication to reduce IOP. XEN45 was granted FDA clearance for the management of refractory glaucoma, including cases where previous surgical treatment has failed, cases of primary open angle glaucoma, and pseudoexfoliative or pigmentary glaucoma with open angles that are unresponsive to maximum tolerated medical therapy. The published pivotal trial data for each, constituting the main evidentiary support, is summarized in the attached table. MIGS Pivotal Trials



Analysis of Evidence (Rationale for Determination)

According to the 2015 AAO POAG Preferred Practice Pattern (PPP), the “potential benefits of a combined procedure (cataract extraction with IOL implantation and glaucoma surgery) are protection against the IOP rise that may complicate cataract surgery alone, the possibility of achieving long-term glaucoma control with a single operation, and elimination of the risk of bleb failure with subsequent cataract surgery when glaucoma surgery is performed first. Therefore, an ophthalmologist may reasonably choose to perform a combined surgery because of these perceived advantages to an individual patient (1).”

In summary, NGS considers one iStent, iStent inject*, or Hydrus device per eye medically reasonable and necessary for the treatment of adults with mild or moderate open-angle glaucoma and a cataract when the individual is currently being treated with an ocular hypotensive medication and the procedure is being performed in conjunction with cataract surgery. In that setting these procedures offer a reduction in IOP, decreased dependence on glaucoma medications, and an excellent safety profile. However, their role within the glaucoma treatment algorithm continues to be clarified and differs from the role of more invasive, external filtration glaucoma surgeries such as trabeculectomy or external aqueous drainage implants. Therefore, all other indications are considered not reasonable and necessary at this time. There is no additional payment for multiple devices (so-called “dosing"), regardless of method, since a statistical benefit has not been demonstrated (27), especially in conjunction with cataract surgery.

The XEN45 device received 510K clearance based on having a similar mechanism (subconjunctival pathway) as “gold standard” filtration procedures (trabeculectomy and tube shunts), demonstrating “substantial equivalence” in the pivotal prospective study of patients with refractory glaucoma (17). Equivalency was further established by a relatively large retrospective cohort study comparing XEN45 with trabeculectomy, finding “no detectable difference in risk of failure and safety profiles” (11). In addition, the American Glaucoma Society (AGS), the New York State Ophthalmological Society (NYSOS), and numerous glaucoma experts wrote NGS to support XEN45 as a minimally invasive method that, “would improve the access of older patients with refractory glaucoma to surgical care with reduction in post-operative discomfort, shorter post-operative disability, equivalent efficacy and safety.”

NGS considers one XEN45 device per eye medically reasonable and necessary for the management of refractory glaucoma, defined (based on the pivotal trial criteria) as prior failure of filtering/cilioablative procedure and/or uncontrolled IOP (progressive damage and mean diurnal medicated IOP ≥20 mm Hg) on maximally tolerated medical therapy (i.e., ≥4 classes of topical IOP-lowering medications, or fewer in the case of tolerability or efficacy issues). XEN45 insertion must be performed by an ophthalmologist with experience with trabeculectomy and bleb management.

*The iStent inject device consists of the 2-stent system. There is no coverage for placement of part of the device (i.e., only one of the two stents).


Proposed Process Information

Synopsis of Changes
Changes Fields Changed
Associated Information
Sources of Information
Open Meetings
Meeting Date Meeting States Meeting Information
Contractor Advisory Committee (CAC) Meetings
Meeting Date Meeting States Meeting Information
MAC Meeting Information URLs
Proposed LCD Posting Date
Comment Period Start Date
Comment Period End Date
Reason for Proposed LCD
Requestor Information
This request was MAC initiated.
Requestor Name Requestor Letter
View Letter
Contact for Comments on Proposed LCD

Coding Information

Bill Type Codes

Code Description

Revenue Codes

Code Description


Group 1

Group 1 Paragraph


Group 1 Codes



ICD-10-CM Codes that Support Medical Necessity

Group 1

Group 1 Paragraph:


Group 1 Codes:



ICD-10-CM Codes that DO NOT Support Medical Necessity

Group 1

Group 1 Paragraph:


Group 1 Codes:



Additional ICD-10 Information

General Information

Associated Information
Sources of Information


  1. American Academy of Ophthalmology (AAO), Glaucoma Panel. Primary Open-Angle Glaucoma. Preferred Practice Pattern. San Francisco, CA: AAO; 2015. Accessed 8/24/16
  2. Samuelson TW, Katz LJ, Wells JM, et al. US iStent Study Group. Randomized Evaluation of the Trabecular Micro-Bypass Stent with Phacoemulsification in Patients with Glaucoma and Cataract. Ophthalmology. 2011;118(3):459-67.
  3. Craven ER, Katz LJ, Wells JM, et al. iStent Study Group. Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: Two-year follow-up. J Cataract Refract Surg. 2012 Aug;38(8):1339-45.
  4. Vold S, Ahmed II, Craven ER, et al. CyPass Study Group. Two-Year COMPASS Trial Results: Supraciliary Microstenting with Phacoemulsification in Patients with Open-Angle Glaucoma and Cataracts. Ophthalmology. 2016 Aug 6. pii: S0161-6420(16)30500-0.
  5. Stalmans I, Vera V. Evaluation of the XEN Implant in Patients With Moderate Primary Open-Angle Glaucoma: 1-Year Results. Abstract presented at the European Glaucoma Society 2016 Congress (EGS), June 19-22, 2016, Prague, Czech Republic.
  6. Anthem policy SURG.00103. Intraocular Anterior Segment Aqueous Drainage Devices (without extraocular reservoir). Last accessed 3/30/17.
  7. Unitedhealthcare policy 2017T0443S. Glaucoma Surgical Treatments. Last accessed 3/30/17.
  8. BCBSMA policy 223. Aqueous Shunts and Stents for Glaucoma. Last accessed 3/30/17.
  9. Aetna policy 0484. Glaucoma Surgery. Last accessed 3/30/17
  10. BCBS policy A.9.03.21. Aqueous Shunts and Stents for Glaucoma. Last accessed 3/30/17.
  11. Schlenker MB, Gulamhusein H, Conrad-Hengerer I, et al. Efficacy, Safety, and Risk Factors for Failure of Standalone Ab Interno Gelatin Microstent Implantation versus Standalone Trabeculectomy. Ophthalmology. 2017;124(11):1579-1588.
  12. Galal A, Bilgic A, Eltanamly R, Osman A. XEN Glaucoma Implant with Mitomycin C 1-Year Follow-Up: Result and Complications. J Ophthalmol. 2017;2017:5457246.
  13. De Gregorio A,  Pedrotti E, Russo L, Morselli S. Minimally invasive combined glaucoma and cataract surgery: clinical results of the smallest ab interno gel stent. Int Ophthalmol. 2017:1-6. doi: 10.1007/s10792-017-0571.
  14. Pérez-Torregrosa VT, Olate-Pérez Á, Cerdà-Ibáñez M, et al. Combined phacoemulsification and Xen 45 surgery from a temporal approach and 2 incisions. Arch Soc Esp Oftalmol. 2016;91(9):415-421.
  15. Pinto Ferreira N, Abegã Pinto L, Marques-Neves C. Xen gel stent internal ostium occlusion: ab-interno revision. J Glaucoma. 2017;26(4):e150–e152.
  16.  Hohberger B,  Welge-LüBen UC, Lämmer R. ICE-Syndrome: A case report of implantation of a microbypass Xen gel stent after DMEK transplantation. J Glaucoma.  2017;26(2):e103–e104.
  17. Grover DS, Flynn WJ, Bashford KP, et al. Performance and Safety of a New Ab Interno Gelatin Stent in Refractory Glaucoma at 12 Months. Am J Ophthalmol. 2017;183:25-36.
  18. Katz LJ, Erb C, Carceller GA, et al. Prospective, randomized study of one, two, or three trabecular bypass stents in open-angle glaucoma subjects on topical hypotensive medication. Clinical Ophthalmology. 2015;9:2313-2320.
  19. Donnenfeld ED, Solomon KD, Voskanyan L, et al. A prospective 3-year follow-up trial of implantation of two trabecular microbypass stents in open-angle glaucoma. Clinical Ophthalmology. 2015;9:2057-2065.
  20. Berdahl J, Voskanyan L, Myers JS, et al. Implantation of two second-generation trabecular micro-bypass stents and topical travoprost in open-angle glaucoma not controlled on two preoperative medications: 18-month follow-up. Clinical & Experimental Ophthalmology. 2017;45(8):797-802.
  21. Ferguson TJ, Berdahl JP, Schweitzer JA, Sudhagoni R. Evaluation of a trabecular micro-bypass stent in pseudophakic patients with open-angle glaucoma. Journal of glaucoma. 2016;25(11):896-900.
  22. Garcia-Feijoo J, Rau M, Grisanti S, Supraciliary micro-stent implantation for open-angle glaucoma failing topical therapy: 1-year results of a multicenter study. Am J Ophthalmol. 2015;159(6):1075–1081.
  23. Roelofs K, Arora S, Dorey MW. Implantation of 2 trabecular microbypass stents in a patient with primary open-angle glaucoma refractory to previous glaucoma-filtering surgeries. Journal of Cataract & Refractive Surgery. 2014;40(8):1322-1324.
  24. Samuelson TW, Chang DF, Marquis R, et al. A Schlemm Canal Microstent for Intraocular Pressure Reduction in Primary Open-Angle Glaucoma and Cataract: The HORIZON Study. Ophthalmology. 2018.
  25. Pfeiffer N, Garcia-Feijoo J, Martinez-de-la-Casa JM, et al. A Randomized Trial of a Schlemm's Canal Microstent with Phacoemulsification for Reducing Intraocular Pressure in Open-Angle Glaucoma. Ophthalmology. 2015;122(7):1283-1293.
  26. Samuelson TW, Sarkisian SR, Jr., Lubeck DM, et al. Prospective, Randomized, Controlled Pivotal Trial of iStent inject Trabecular Micro-Bypass in Primary Open-Angle Glaucoma and Cataract: Two-Year Results. Ophthalmology. 2019.
  27. Katz LJ, Erb C, Carceller Guillamet A, et al. Long-term titrated IOP control with one, two, or three trabecular micro-bypass stents in open-angle glaucoma subjects on topical hypotensive medication: 42-month outcomes. Clin Ophthalmol. 2018;12:255-262.

Revision History Information

Revision History Date Revision History Number Revision History Explanation Reasons for Change
12/01/2019 R4

Consistent with Change Request 10901, all coding information, National coverage provisions, and Associated Information (Documentation Requirements, Utilization Guidelines) have been removed from the LCD and placed in the related Billing and Coding Article, A56588. 

Based on a reconsideration request, added coverage for iStent inject.


  • Provider Education/Guidance
  • Reconsideration Request
11/08/2018 R3

Based on a reconsideration request received in October 2018, coverage has been added for Hydrus Microstent with the use of CPT code 0191T, effective for services rendered on or after 11/8/2018.

  • Reconsideration Request
03/01/2018 R2

CPT code 0450T was inadvertently placed in CPT/HCPCS Code section-Group 1 rather than CPT/HCPCS Code section- Group 2 and has been moved appropriately to Group 2.


  • Typographical Error
03/01/2018 R1

Based on a Reconsideration Request received in December 2017, CPT codes 0449T and 0450T have been added to the CPT/HCPCS code section- Group 1.  Coverage is effective for services rendered on or after 03/01/2018.

  • Reconsideration Request

Associated Documents

MIGS Pivotal Trials 11-08-2018 (34 KB) (Uploaded on 11/02/2018)
Related National Coverage Documents
Public Versions
Updated On Effective Dates Status
06/08/2022 12/01/2019 - N/A Currently in Effect View
10/02/2019 12/01/2019 - N/A Superseded You are here
Some older versions have been archived. Please visit the MCD Archive Site to retrieve them.



Read the LCD Disclaimer